Graph Spectral Point Cloud Processing

2021 ◽  
pp. 181-219
Author(s):  
Wei Hu ◽  
Siheng Chen ◽  
Dong Tian
2021 ◽  
Vol 13 (10) ◽  
pp. 1985
Author(s):  
Emre Özdemir ◽  
Fabio Remondino ◽  
Alessandro Golkar

With recent advances in technologies, deep learning is being applied more and more to different tasks. In particular, point cloud processing and classification have been studied for a while now, with various methods developed. Some of the available classification approaches are based on specific data source, like LiDAR, while others are focused on specific scenarios, like indoor. A general major issue is the computational efficiency (in terms of power consumption, memory requirement, and training/inference time). In this study, we propose an efficient framework (named TONIC) that can work with any kind of aerial data source (LiDAR or photogrammetry) and does not require high computational power while achieving accuracy on par with the current state of the art methods. We also test our framework for its generalization ability, showing capabilities to learn from one dataset and predict on unseen aerial scenarios.


2020 ◽  
Vol 12 (10) ◽  
pp. 1677 ◽  
Author(s):  
Ana Novo ◽  
Noelia Fariñas-Álvarez ◽  
Joaquin Martínez-Sánchez ◽  
Higinio González-Jorge ◽  
Henrique Lorenzo

The optimization of forest management in the surroundings of roads is a necessary task in term of wildfire prevention and the mitigation of their effects. One of the reasons why a forest fire spreads is the presence of contiguous flammable material, both horizontally and vertically and, thus, vegetation management becomes essential in preventive actions. This work presents a methodology to detect the continuity of vegetation based on aerial Light Detection and Ranging (LiDAR) point clouds, in combination with point cloud processing techniques. Horizontal continuity is determined by calculating Cover Canopy Fraction (CCF). The results obtained show 50% of shrubs presence and 33% of trees presence in the selected case of study, with an error of 5.71%. Regarding vertical continuity, a forest structure composed of a single stratum represents 81% of the zone. In addition, the vegetation located in areas around the roads were mapped, taking into consideration the distances established in the applicable law. Analyses show that risky areas range from a total of 0.12 ha in a 2 m buffer and 0.48 ha in a 10 m buffer, representing a 2.4% and 9.5% of the total study area, respectively.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4569
Author(s):  
Joan R. Rosell-Polo ◽  
Eduard Gregorio ◽  
Jordi Llorens

In this editorial, we provide an overview of the content of the special issue on “Terrestrial Laser Scanning”. The aim of this Special Issue is to bring together innovative developments and applications of terrestrial laser scanning (TLS), understood in a broad sense. Thus, although most contributions mainly involve the use of laser-based systems, other alternative technologies that also allow for obtaining 3D point clouds for the measurement and the 3D characterization of terrestrial targets, such as photogrammetry, are also considered. The 15 published contributions are mainly focused on the applications of TLS to the following three topics: TLS performance and point cloud processing, applications to civil engineering, and applications to plant characterization.


Sign in / Sign up

Export Citation Format

Share Document