point cloud processing
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 65)

H-INDEX

9
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6650
Author(s):  
Shichang Xu ◽  
Gang Cheng ◽  
Yusong Pang ◽  
Zujin Jin ◽  
Bin Kang

Real-time and accurate longitudinal rip detection of a conveyor belt is crucial for the safety and efficiency of an industrial haulage system. However, the existing longitudinal detection methods possess drawbacks, often resulting in false alarms caused by tiny scratches on the belt surface. A method of identifying the longitudinal rip through three-dimensional (3D) point cloud processing is proposed to solve this issue. Specifically, the spatial point data of the belt surface are acquired by a binocular line laser stereo vision camera. Within these data, the suspected points induced by the rips and scratches were extracted. Subsequently, a clustering and discrimination mechanism was employed to distinguish the rips and scratches, and only the rip information was used as alarm criterion. Finally, the direction and maximum width of the rip can be effectively characterized in 3D space using the principal component analysis (PCA) method. This method was tested in practical experiments, and the experimental results indicate that this method can identify the longitudinal rip accurately in real time and simultaneously characterize it. Thus, applying this method can provide a more effective and appropriate solution to the identification scenes of longitudinal rip and other similar defects.


2021 ◽  
Vol 13 (17) ◽  
pp. 3519
Author(s):  
Dongfeng Jia ◽  
Weiping Zhang ◽  
Yanping Liu

The use of terrestrial laser scanning (TLS) point clouds for tunnel deformation measurement has elicited much interest. However, general methods of point-cloud processing in tunnels are still under investigation, given the high accuracy and efficiency requirements in this area. This study discusses a systematic method of analyzing tunnel deformation. Point clouds from different stations need to be registered rapidly and with high accuracy before point-cloud processing. An orientation method of TLS in tunnels that uses a positioning base made in the laboratory is proposed for fast point-cloud registration. The calibration methods of the positioning base are demonstrated herein. In addition, an improved moving least-squares method is proposed as a way to reconstruct the centerline of a tunnel from unorganized point clouds. Then, the normal planes of the centerline are calculated and are used to serve as the reference plane for point-cloud projection. The convergence of the tunnel cross-section is analyzed, based on each point cloud slice, to determine the safety status of the tunnel. Furthermore, the results of the deformation analysis of a particular shield tunnel site are briefly discussed.


2021 ◽  
Vol 4 (1) ◽  
pp. 75-85
Author(s):  
Mária Hrčková ◽  
Pavol Koleda

Abstract The paper describes a solution of reverse engineering tasks using the equipment of the laboratory of the Technical University in Zvolen. The first task was linked to evaluation of a wear rate of the tool used to for mulching and elimination of unwanted wood or weed vegetation. The obtained data will be used as a base line for determination of the time interval for the tool replacement. We developed a prototype of components and their drawing documentation for a single-purpose machine for cutting barley. We created the 3D model using the method of photogrammetry. The finished drawing documentation and prototypes were handed over to the company KRUP. Finally, we identified the most suitable procedures for creating a model of a part with a complex shape. We tested the techniques of editing the point cloud processing, as well as of smoothing the surfaces and automating the creation of partial geometric elements of the model. Based on the properties of the component, which is the starting point of the entire reverse engineering process and from the achieved results, we set recommendations for the selection of appropriate procedures.


2021 ◽  
Vol 13 (16) ◽  
pp. 3225
Author(s):  
Benjamin Štular ◽  
Stefan Eichert ◽  
Edisa Lozić

The use of topographic airborne LiDAR data has become an essential part of archaeological prospection. However, as a step towards theoretically aware, impactful, and reproducible research, a more rigorous and transparent method of data processing is required. To this end, we set out to create a processing pipeline for archaeology-specific point cloud processing and derivation of products that are optimized for general-purpose data. The proposed pipeline improves on ground and building point cloud classification. The main area of innovation in the proposed pipeline is raster grid interpolation. We have improved the state-of-the-art by introducing a hybrid interpolation technique that combines inverse distance weighting with a triangulated irregular network with linear interpolation. State-of-the-art solutions for enhanced visualizations are included and essential metadata and paradata are also generated. In addition, we have introduced a QGIS plug-in that implements the pipeline as a one-step process. It reduces the manual workload by 75 to 90 percent and requires no special skills other than a general familiarity with the QGIS environment. It is intended that the pipeline and tool will contribute to the white-boxing of archaeology-specific airborne LiDAR data processing. In discussion, the role of data processing in the knowledge production process is explored.


2021 ◽  
Vol 13 (16) ◽  
pp. 3169
Author(s):  
Michal Polák ◽  
Jakub Miřijovský ◽  
Alba E. Hernándiz ◽  
Zdeněk Špíšek ◽  
Radoslav Koprna ◽  
...  

The estimation of plant growth is a challenging but key issue that may help us to understand crop vs. environment interactions. To perform precise and high-throughput analysis of plant growth in field conditions, remote sensing using LiDAR and unmanned aerial vehicles (UAV) has been developed, in addition to other approaches. Although there are software tools for the processing of LiDAR data in general, there are no specialized tools for the automatic extraction of experimental field blocks with crops that represent specific “points of interest”. Our tool aims to detect precisely individual field plots, small experimental plots (in our case 10 m2) which in agricultural research represent the treatment of a single plant or one genotype in a breeding trial. Cutting out points belonging to the specific field plots allows the user to measure automatically their growth characteristics, such as plant height or plot biomass. For this purpose, new method of edge detection was combined with Fourier transformation to find individual field plots. In our case study with winter wheat, two UAV flight levels (20 and 40 m above ground) and two canopy surface modelling methods (raw points and B-spline) were tested. At a flight level of 20 m, our algorithm reached a 0.78 to 0.79 correlation with LiDAR measurement with manual validation (RMSE = 0.19) for both methods. The algorithm, in the Python 3 programming language, is designed as open-source and is freely available publicly, including the latest updates.


2021 ◽  
pp. 181-219
Author(s):  
Wei Hu ◽  
Siheng Chen ◽  
Dong Tian

Sign in / Sign up

Export Citation Format

Share Document