The Sequence Architecture of Mid-Pleistocene (c. 1.1-0.4Ma) Cyclothems from New Zealand: Facies Development during a Period of Orbital Control on Sea-Level Cyclicity

Author(s):  
S. T. Abbott ◽  
R. M. Carter
Author(s):  
Daniel J. King ◽  
Rewi M. Newnham ◽  
W. Roland Gehrels ◽  
Kate J. Clark

2012 ◽  
Vol 63 (4) ◽  
pp. 370 ◽  
Author(s):  
Hugh R. Grenfell ◽  
Bruce W. Hayward ◽  
Ritsuo Nomura ◽  
Ashwaq T. Sabaa

The present study aimed to extract a sea-level history from northern New Zealand salt-marsh sediments using a foraminiferal proxy, and to extend beyond the longest nearby tide-gauge record. Transects through high-tidal salt marsh at Puhinui, Manukau Harbour, Auckland, New Zealand, indicate a zonation of dominant foraminifera in the following order (with increasing elevation): Ammonia spp.–Elphidium excavatum, Ammotium fragile, Miliammina fusca, Haplophragmoides wilberti–Trochammina inflata, Trochamminita salsa–Miliammina obliqua. The transect sample faunas are used as a training set to generate a transfer function for estimating past tidal elevations in two short cores nearby. Heavy metal, 210Pb and 137Cs isotope analyses provide age models that indicate 35 cm of sediment accumulation since ~1890 AD. The first proxy-based 20th century rates of sea-level rise from New Zealand’s North Island at 0.28 ± 0.05 cm year–1 and 0.33 ± 0.07 cm year–1 are estimated. These are faster than the nearby Auckland tide gauge for the same interval (0.17 ± 0.1 cm year–1), but comparable to a similar proxy record from southern New Zealand (0.28 ± 0.05 cm year–1) and to satellite-based observations of global sea-level rise since 1993 (0.31 ± 0.07 cm year–1).


2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


Author(s):  
Dougal B. Townsend ◽  
John G. Begg ◽  
Russ J. Van Dissen ◽  
David A. Rhoades ◽  
Wendy S. A. Saunders ◽  
...  

Ground deformation can contribute significantly to losses in major earthquakes. Areas that suffer permanent ground deformation in addition to strong ground shaking typically sustain greater levels of damage and loss than areas suffering strong ground-shaking alone. The lower Hutt Valley of the Wellington region, New Zealand, is adjacent to the active Wellington Fault. The long-term signal of vertical deformation there is subsidence, and the most likely driver of this is rupture of the Wellington Fault. In 1855 the Mw ~8.2 Wairarapa Earthquake resulted in uplift of the lower Hutt Valley area and created an expectation that future earthquakes would do the same. However, sediments beneath the lower Hutt Valley floor up to c. 220 thousand years old provide data that when combined with the international sea level curve demonstrate cumulative net subsidence of up to c. 155 m during that period. Recent refinement of rupture parameters for the Wellington Fault (and other faults in the region), based on new field data, has spurred us to reassess estimates of vertical deformation in the Hutt Valley that would result from rupture of the Wellington Fault. Using a logic tree framework, we calculate subsidence for an “average” Wellington Fault event of ~1.9 m near Petone, ~1.7m near Lower Hutt City, ~1.4 m near Seaview, and ~0 m in the Taita area. Such a distribution of vertical deformation would result in large areas of Alicetown-Petone and Moera-Seaview subsiding below sea level. We also calculate and present “minimum” and “maximum” credible subsidence values, which are approximately half and twice the mean values, respectively. This ground deformation hazard certainly has societal implications, and we are working with local and regional councils to develop a range of mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document