MALDI-MS in Protein Chemistry and Proteomics

MALDI MS ◽  
2013 ◽  
pp. 105-131
Author(s):  
Karin Hjernø ◽  
Ole N. Jensen
Keyword(s):  
Maldi Ms ◽  
1998 ◽  
Vol 14 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Martin Kussmann ◽  
Peter Roepstorff

Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) has become a primary tool for the detailed characterisation of the covalent structure of proteins isolated from biological material, mainly because of its following potentials: high sensitivity and specificity, speed of analysis, appropriateness for mixture analysis, high tolerance towards contaminants, and compatibility with separation techniques, e.g., gel electrophoresis. These characteristics enable the structural analysis of proteins even if they are only available in limited amounts and/or in mixtures, and even if the protein preparations contain large amounts of salts, buffers, detergents and denaturants. Additionally, structural data can be generated within a relatively short time.Whereas X-ray crystallography and multidimensional NMR techniques can provide “absolute” structural data, i.e., a three-dimensional “picture” of the protein of interest, MALDI-MS-especially in combination with selective protein chemistry – yields information on particular aspects of the entire protein structure, e.g., primary structure, active site(s), binding sites, and posttranslational modifications, all of which are often of crucial interest for the understanding of the protein function. Taking into account that protein crystallography and protein NMR studies require large quantities of highly purified sample, MALDI-MS can be even more regarded as a powerful complement in protein structure analysis.This review aims at describing the state-of-the-art of MALDI-MS for characterisation of proteins from biological material by evaluating its potential and limitations.


MALDI MS ◽  
2007 ◽  
pp. 83-108 ◽  
Author(s):  
Karin Hjern ◽  
Ole N. Jensen
Keyword(s):  
Maldi Ms ◽  

Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


2021 ◽  
Vol 243 ◽  
pp. 104380
Author(s):  
Thamiris Vieira Marsico ◽  
José Nélio de Sousa Sales ◽  
Christina Ramires Ferreira ◽  
Mateus José Sudano ◽  
João Henrique Moreira Viana ◽  
...  
Keyword(s):  

2020 ◽  
Vol 58 (6) ◽  
pp. 883-896 ◽  
Author(s):  
Muhammad Zubair Israr ◽  
Dennis Bernieh ◽  
Andrea Salzano ◽  
Shabana Cassambai ◽  
Yoshiyuki Yazaki ◽  
...  

AbstractBackgroundMatrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics.ContentThis review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories.SummaryMALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases.OutlookThere is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.


Author(s):  
Gargey Yagnik ◽  
Ziying Liu ◽  
Kenneth J. Rothschild ◽  
Mark J. Lim
Keyword(s):  
Maldi Ms ◽  

Sign in / Sign up

Export Citation Format

Share Document