Statistical and Numerical Methods of Data Analysis

1994 ◽  
pp. 111-161 ◽  
Author(s):  
Robin Taylor ◽  
Frank H. Allen
2019 ◽  
Vol 19 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Ivan Gavrilyuk ◽  
Boris N. Khoromskij

AbstractMost important computational problems nowadays are those related to processing of the large data sets and to numerical solution of the high-dimensional integral-differential equations. These problems arise in numerical modeling in quantum chemistry, material science, and multiparticle dynamics, as well as in machine learning, computer simulation of stochastic processes and many other applications related to big data analysis. Modern tensor numerical methods enable solution of the multidimensional partial differential equations (PDE) in {\mathbb{R}^{d}} by reducing them to one-dimensional calculations. Thus, they allow to avoid the so-called “curse of dimensionality”, i.e. exponential growth of the computational complexity in the dimension size d, in the course of numerical solution of high-dimensional problems. At present, both tensor numerical methods and multilinear algebra of big data continue to expand actively to further theoretical and applied research topics. This issue of CMAM is devoted to the recent developments in the theory of tensor numerical methods and their applications in scientific computing and data analysis. Current activities in this emerging field on the effective numerical modeling of temporal and stationary multidimensional PDEs and beyond are presented in the following ten articles, and some future trends are highlighted therein.


1966 ◽  
Vol 14 (1) ◽  
pp. 131 ◽  
Author(s):  
RC Jancey

The results of the application of two methods of data analysis are given, and a technique for combining these results in a pictorial model of the taxonomic relationships is described.


2020 ◽  
Author(s):  
Roberta Sauro Graziano ◽  
Renguang Zuo ◽  
Antonella Buccianti ◽  
Orlando Vaselli ◽  
Barbara Nisi ◽  
...  

<p>Groundwater systems are typical dissipative structures and their evolution can be affected by non-linear dynamics. In this framework, geochemical and hydrological processes are often characterized by random components mixed with intermittency and presence of positive feedbacks between fluid transport and mineral dissolution. Therefore, in these cases, complex variability structures in the chemical signature of waters are recognized. Large fluctuations in intermittent processes are not rare as in normal and log-normal processes and significantly contribute to the statistical moments, thus moving the physicochemical data from the Euclidean geometry to fractals and multifractals.</p><p>Since the knowledge of dynamics in water systems has substantial implications in the management of the water resource, groundwater chemistry can better be understood by using innovative graphical and numerical methods in the light of the Compositional Data Analysis Theory (CoDA, Aitchison, 1986), which is particularly suitable to explore the whole composition and the relationships between its parts.</p><p>The whole compositional change, characterizing each sample with respect to some end-members (i.e. rain waters, pristine waters and sea water), is modeled by using the perturbation operator in the simplex geometry (Pawlowsky-Glahn and Buccianti, 2011). Perturbation factors are calculated and then analyzed by investigating their cumulative distribution function (Pr[X>=x]) with the aim of registering the presence of power laws (fractal and multifractal dynamics) and forecasting a possible spatial behavior.</p><p>Results obtained for some aquifers from Tuscany (central Italy) are presented and discussed in the framework of the GEOBASI project (Nisi et al., 2016). Preliminary evaluations indicate that perturbation factors are sensible tools to: 1) identify the different components (random, deterministic, fractal) contributing to the variability of the geochemical data, 2) discriminate the role of additive and multiplicative phenomena in time and/or space, 3) highlight the presence of non-linear dissipation with the energy exchanges between different scales.[Office1] </p><p> </p><p>Aitchison, J., 1986.  The statistical analysis of compositional data. Monographs on Statistics and Applied Probability (Reprinted in 2003 by The Blackburn Press), Chapman and Hall, 416 p.</p><p>Nisi, B., Buccianti, A., Raco, B., Battaglini, R., 2016. Analysis of complex regional databases and their support in the identification of background/baseline compositional facies in groundwater investigation: developments and application examples. Journal of Geochemical Exploration 164, 3-17</p><p>Pawlowsky-Glahn, V., Buccianti, A., 2011. Compositional Data Analysis: Theory and applications. Chichester, John Wiley & Sons, 378 p.</p>


Sign in / Sign up

Export Citation Format

Share Document