independent domain theory of sorption

Author(s):  
Daniel W. Siderius

Sorption isotherms collected from tables in the seminal dissertation, “The Thermodynamics and Hysteresis of Adsorption” by A. J. Brown, have been digitized and made publicly available, along with supporting software scripts that facilitates usage of the data. The isotherms include laboratory measurements of xenon, krypton, and carbon dioxide adsorption (and, when possible, desorption) isotherms on a single sample of Vycor glass1, at various temperatures including subcritical conditions for xenon and krypton. The highlight of this dataset is the collection of “scanning” isotherms for xenon on Vycor at 131 K. The scanning isotherms examine numerous trajectories through the adsorption-desorption hysteresis region, such as primary adsorption and desorption scanning isotherms that terminate at the hysteresis boundary, secondary scanning isotherms made by selective reversals that return to the boundary, and closed scanning loops. This dataset was originally used to test the independent domain theory of adsorption and continues to support successor theories of adsorption/desorption scanning hysteresis including more recent theories based on percolation models. Through digital preservation and release of the tables from Brown’s dissertation, these data are now more easily accessible and can continue to find use in developing models of adsorption for fundamental and practical applications.


1982 ◽  
Vol 43 (3) ◽  
pp. 567-574 ◽  
Author(s):  
U. Kh. Kopvillem ◽  
S.V. Prants
Keyword(s):  

Author(s):  
Yiyang Zhang ◽  
Feng Liu ◽  
Zhen Fang ◽  
Bo Yuan ◽  
Guangquan Zhang ◽  
...  
Keyword(s):  

2005 ◽  
Vol 498-499 ◽  
pp. 129-133 ◽  
Author(s):  
Marcos Flavio de Campos ◽  
Fernando José Gomes Landgraf

SmCo5 magnets are usually produced by powder metallurgy route, including milling, compaction and orientation under magnetic field, sintering and heat treatment. The samples produced by powder metallurgy, with grain size around 10 μm, are ideal for determination of intrinsic parameters. The first step for determination of intrinsic magnetic parameters is obtaining images of domain structure in demagnetized samples. In the present study, the domain images were produced by means of Kerr effect, in a optical microscope. After the test of several etchings, Nital appears as the most appropriate for observation of magnetic domains by Kerr effect. Applying Stereology and Domain Theory, several intrinsic parameters of SmCo5 phase were determined: domain wall energy 120 erg/cm2, critical diameter for single domain particle size 2 μm and domain wall thickness 60 Å. In the case of SmCo5, and also other phases with high magnetocrystalline anisotropy, Domain Theory presents several advantages when compared with Micromagnetics.


2000 ◽  
Vol 10 (6) ◽  
pp. 719-745 ◽  
Author(s):  
MICHAEL HUTH ◽  
ACHIM JUNG ◽  
KLAUS KEIMEL

We study continuous lattices with maps that preserve all suprema rather than only directed ones. We introduce the (full) subcategory of FS-lattices, which turns out to be *-autonomous, and in fact maximal with this property. FS-lattices are studied in the presence of distributivity and algebraicity. The theory is extremely rich with numerous connections to classical Domain Theory, complete distributivity, Topology and models of Linear Logic.


2001 ◽  
Vol 10 (04) ◽  
pp. 613-637 ◽  
Author(s):  
M. M. WEST ◽  
T. L. McCLUSKEY

In this paper we describe a project (IMPRESS) in which machine learning (ML) tools were created and utilised for the validation of an Air Traffic Control domain theory written in first order logic. During the project, novel techniques were devised for the automated revision of general clause form theories using training examples. These techniques were combined in an algorithm which focused in on the parts of a theory which involve ordinal sorts, and applied geometrical revision operators to repair faulty component parts. While we illustrate the feasibility of applying ML to this area, we conclude that to be effective it must be focused to the application at hand, and used in mixed-initiative mode within a tools environment. The method is illustrated with experimental results obtained during the project.


Sign in / Sign up

Export Citation Format

Share Document