carbon dioxide adsorption
Recently Published Documents


TOTAL DOCUMENTS

467
(FIVE YEARS 122)

H-INDEX

58
(FIVE YEARS 10)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7688
Author(s):  
Igor K. Petrushenko ◽  
Nikolay A. Ivanov ◽  
Konstantin B. Petrushenko

Recently, the capture of carbon dioxide, the primary greenhouse gas, has attracted particular interest from researchers worldwide. In the present work, several theoretical methods have been used to study adsorption of CO2 molecules on Li+-decorated coronene (Li+@coronene). It has been established that Li+ can be strongly anchored on coronene, and then a physical adsorption of CO2 will occur in the vicinity of this cation. Moreover, such a decoration has substantially improved interaction energy (Eint) between CO2 molecules and the adsorbent. One to twelve CO2 molecules per one Li+ have been considered, and their Eint values are in the range from −5.55 to −16.87 kcal/mol. Symmetry-adapted perturbation theory (SAPT0) calculations have shown that, depending on the quantity of adsorbed CO2 molecules, different energy components act as the main reason for attraction. AIMD simulations allow estimating gravimetric densities (GD, wt.%) at various temperatures, and the maximal GDs have been calculated to be 9.3, 6.0, and 4.9% at T = 77, 300, and 400 K, respectively. Besides this, AIMD calculations validate stability of Li+@coronene complexes during simulation time at the maximum CO2 loading. Bader’s atoms-in-molecules (QTAIM) and independent gradient model (IGM) techniques have been implemented to unveil the features of interactions between CO2 and Li+@coronene. These methods have proved that there exists a non-covalent bonding between the cation center and CO2. We suppose that findings, derived in this theoretical work, may also benefit the design of novel nanosystems for gas storage and delivery.


Author(s):  
Daniel W. Siderius

Sorption isotherms collected from tables in the seminal dissertation, “The Thermodynamics and Hysteresis of Adsorption” by A. J. Brown, have been digitized and made publicly available, along with supporting software scripts that facilitates usage of the data. The isotherms include laboratory measurements of xenon, krypton, and carbon dioxide adsorption (and, when possible, desorption) isotherms on a single sample of Vycor glass1, at various temperatures including subcritical conditions for xenon and krypton. The highlight of this dataset is the collection of “scanning” isotherms for xenon on Vycor at 131 K. The scanning isotherms examine numerous trajectories through the adsorption-desorption hysteresis region, such as primary adsorption and desorption scanning isotherms that terminate at the hysteresis boundary, secondary scanning isotherms made by selective reversals that return to the boundary, and closed scanning loops. This dataset was originally used to test the independent domain theory of adsorption and continues to support successor theories of adsorption/desorption scanning hysteresis including more recent theories based on percolation models. Through digital preservation and release of the tables from Brown’s dissertation, these data are now more easily accessible and can continue to find use in developing models of adsorption for fundamental and practical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3375
Author(s):  
Peng Wang ◽  
Jun Cao ◽  
Yujiao Zhang ◽  
Qi Sun

A large amount of remaining fly ash has been piled up or landfilled, which not only a waste of land resources but also results in a series of environmental problems. Therefore, using fly ash to produce high value-added products is a win-win development orientation between human beings and nature. In this study, zeolite A is successfully synthesized using a hydrothermal method using fly ash. Additionally, it is at 1.0 mol·L−1 of the alkali concentration that the crystallinity of zeolite A reaches the maximum value, about 96.6%. FTIR research shows that the main secondary structural unit D4R vibration band of zeolite A appears at 555 cm−1. The results of the SEM study indicate the structure of zeolite A is cubic. The TEM results show that the crystal structure of the zeolite A belongs to the body-centered cubic structure. Meanwhile, the positively charged sodium ions cooperate with the silicon oxygen tetrahedron and the aluminum oxygen tetrahedron to form the zeolite A skeleton. Carbon dioxide adsorption equilibrium study shows that the maximum adsorption capacity of zeolite A of 46.5 mL·g−1 is significantly higher than the maximum adsorption capacity of commercial-grade zeolite 4A of 39.3 mL·g−1. In addition, the application of the Langmuir model in the adsorption of carbon dioxide by commercial-grade zeolite 4A and zeolite A is studied, which not only extends the application of zeolite A, but can be further extended to other zeolite materials as well. Meanwhile, the adsorption process belongs to the Langmuir model, which is a single layer adsorption on an ideal surface.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4004
Author(s):  
Junsik Nam ◽  
Eunkyung Jeon ◽  
Su-Young Moon ◽  
Ji-Woong Park

Copolyurea networks (co-UNs) were synthesized via crosslinking polymerization of a mixture of tetrakis(4-aminophenyl)methane (TAPM) and melamine with hexamethylene diisocyanate (HDI) using the organic sol-gel polymerization method. The subsequent thermal treatment of between 200 and 400 °C induced the sintering of the powdery polyurea networks to form porous frameworks via urea bond rearrangement and the removal of volatile hexamethylene moieties. Incorporating melamine into the networks resulted in a higher nitrogen content and micropore ratio, whereas the overall porosity decreased with the melamine composition. The rearranged network composed of the tetraamine/melamine units in an 80:20 ratio showed the highest carbon dioxide adsorption quantity at room temperature. The results show that optimizing the chemical structure and porosity of polyurea-based networks can lead to carbon dioxide adsorbents working at elevated temperatures.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1424
Author(s):  
Jong-tak Lee ◽  
Jae-Young Bae

To improve the adsorption performance of carbon dioxide, which is considered the main culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material should be considered. For a porous material, the performance of carbon dioxide adsorption is determined by the amine groups supporting capacity; the larger the pore volume, the greater the capacity to support the amine groups. In this study, a double-shell mesoporous hollow silica nanomaterial with excellent pore volume and therefore increased amine support capacity was synthesized. A core–shell structure capable of having a hollow shape was synthesized using polystyrene as a core material, and a double-shell mesoporous shape was synthesized by sequentially using two types of surfactants. The synthesized material was subjected to a sintering process of 600 degrees, and the N2 sorption analysis confirmed a specific surface area of 690 m2/g and a pore volume of 1.012 cm3/g. Thereafter, the amine compound was impregnated into the silica nanomaterial, and then, a carbon dioxide adsorption experiment was conducted, which confirmed that compared to the mesoporous hollow silica nanomaterial synthesized as a single shell, the adsorption performance was improved by about 1.36 times.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yifan Tan ◽  
Xiaoqiang Wang ◽  
Shen Song ◽  
Meijiao Sun ◽  
Yuhua Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document