Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminium Alloy 6160

2010 ◽  
pp. NA-NA ◽  
Author(s):  
Chang Ye ◽  
Yiciang Liao ◽  
Gary J. Cheng
2011 ◽  
Vol 681 ◽  
pp. 296-302 ◽  
Author(s):  
Neila Hfaiedh ◽  
P. Peyre ◽  
I. Popa ◽  
Vincent Vignal ◽  
Wilfrid Seiler ◽  
...  

Laser shock peening (LSP) is an innovative surface treatment technique successfully applied to improving fatigue performance of metallic material. The specific characteristic of (LSP) is the generation of a low work-hardening and a deep compressive residual stresses mechanically produced by a laser-induced shock wave propagating in the material. The aim of this study is to analyse the residual stress distribution induced by laser peening in 2050-T8 aluminium alloy experimentally by the X-ray diffraction technique (method sin2Y) and numerically, by a finite element numerical modelling. A specific focus was put on the residual stress distribution along the surface of the impacted material.


2013 ◽  
Vol 652-654 ◽  
pp. 2378-2383 ◽  
Author(s):  
Zi Wen Cao ◽  
Shui Li Gong ◽  
Yu Gao

Laser shock peening (LSP) is widely known as a cold-worked surface treatment, and this technology has been to greatly improve the fatigue life of many metallic components. Our works focused on laser shock peening with Nd: glass laser system (pulse duration 30ns) and square laser spot size of 4mm×4mm for TC17 titanium alloy. Surface morphology, residual stresses and fatigue performance had been studied for TC17 alloy specimens and blades processed by LSP treatment. The results show that plastic strains in shocked dents become more homogeneous than ones produced by original circle spot with gaussian energy distribution. Surface residual stresses which measured using x-ray diffraction method showed different characteristic as varying specimen thickness, and LSP with overlapping ratio of 8% provided uniform residual stresses on peened surface. Low fluence peening which was implemented at borderline of peened surface was effective to diminish the stress gradient. Compared with mechanical shot peening, LSP attained smoother surface, lower microhardness and better fatigue performance. In a word, Square-spot LSP is an excellent way to improve fatigue life of titanium blade.


Sign in / Sign up

Export Citation Format

Share Document