Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods

2012 ◽  
Vol 59 ◽  
pp. 324-333 ◽  
Author(s):  
Uroš Trdan ◽  
Janez Grum
Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Muhammad Arif Mahmood ◽  
Diana Chioibasu ◽  
Asif Ur Rehman ◽  
Sabin Mihai ◽  
Andrei C. Popescu

Additive manufacturing (AM) processes can produce three-dimensional (3D) near-net-shape parts based on computer-aided design (CAD) models. Compared to traditional manufacturing processes, AM processes can generate parts with intricate geometries, operational flexibility and reduced manufacturing time, thus saving time and money. On the other hand, AM processes face complex issues, including poor surface finish, unwanted microstructure phases, defects, wear tracks, reduced corrosion resistance and reduced fatigue life. These problems prevent AM parts from real-time operational applications. Post-processing techniques, including laser shock peening, laser polishing, conventional machining methods and thermal processes, are usually applied to resolve these issues. These processes have proved their capability to enhance the surface characteristics and physical and mechanical properties. In this study, various post-processing techniques and their implementations have been compiled. The effect of post-processing techniques on additively manufactured parts has been discussed. It was found that laser shock peening (LSP) can cause severe strain rate generation, especially in thinner components. LSP can control the surface regularities and local grain refinement, thus elevating the hardness value. Laser polishing (LP) can reduce surface roughness up to 95% and increase hardness, collectively, compared to the as-built parts. Conventional machining processes enhance surface quality; however, their influence on hardness has not been proved yet. Thermal post-processing techniques are applied to eliminate porosity up to 99.99%, increase corrosion resistance, and finally, the mechanical properties’ elevation. For future perspectives, to prescribe a particular post-processing technique for specific defects, standardization is necessary. This study provides a detailed overview of the post-processing techniques applied to enhance the mechanical and physical properties of AM-ed parts. A particular method can be chosen based on one’s requirements.


2011 ◽  
Vol 681 ◽  
pp. 296-302 ◽  
Author(s):  
Neila Hfaiedh ◽  
P. Peyre ◽  
I. Popa ◽  
Vincent Vignal ◽  
Wilfrid Seiler ◽  
...  

Laser shock peening (LSP) is an innovative surface treatment technique successfully applied to improving fatigue performance of metallic material. The specific characteristic of (LSP) is the generation of a low work-hardening and a deep compressive residual stresses mechanically produced by a laser-induced shock wave propagating in the material. The aim of this study is to analyse the residual stress distribution induced by laser peening in 2050-T8 aluminium alloy experimentally by the X-ray diffraction technique (method sin2Y) and numerically, by a finite element numerical modelling. A specific focus was put on the residual stress distribution along the surface of the impacted material.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1078
Author(s):  
Long Ma ◽  
Wanqing Li ◽  
Yongzhi Yang ◽  
Yuanxue Ma ◽  
Kai Luo ◽  
...  

NiTi alloys are commonly used in many fields such as aerospace, mechanical engineering due to their excellent mechanical properties and shape memory effect. In recent years, the emergence of selective laser melting (SLM) technology provides a new method for the preparation of NiTi parts. But the surface corrosion failure of SLM-NiTi is the most common problem. This paper mainly focuses on the research of femtosecond laser shock peening of the surface of SLM-NiTi alloy to improve the corrosion resistance. Selecting different scanning space (1 μm, 3 μm, 5 μm, 10 μm), and analyze the surface morphology of the material through the OM, SEM, EDS and white light interferometer, and investigate the surface nanohardness and corrosion resistance through nanoindentation and electrochemical testing. The research results show that part of the TiO2 is formed under different scanning spaces, and part of NiO is formed when the scanning space is 1μm. At the same time, it is found that the sample under the condition of 10 μm has the most excellent corrosion resistance and nanohardness. The nanohardness reaches 1303 ± 40 HV and the corrosion current density reaches 1.45 ± 0.1 × 10−9 A·cm−2. Proper femtosecond laser treatment can effectively improve the surface strength and corrosion resistance of the NiTi alloys.


2017 ◽  
Vol 54 (6) ◽  
pp. 061402
Author(s):  
李玉琴 Li Yuqin ◽  
孟长军 Meng Changjun ◽  
王学德 Wang Xuede ◽  
罗思海 Luo Sihai ◽  
徐伟胜 Xu Weisheng

Sign in / Sign up

Export Citation Format

Share Document