scholarly journals The Very-Low Shear Modulus of Multi-Walled Carbon Nanotubes Determined Simultaneously with the Axial Young's Modulus via in situ Experiments

2008 ◽  
Vol 18 (12) ◽  
Author(s):  
Xian-Long Wei ◽  
Yang Liu ◽  
Qing Chen ◽  
Ming-Sheng Wang ◽  
Lian-Mao Peng
2011 ◽  
Vol 697-698 ◽  
pp. 487-490
Author(s):  
M.Y. Zhou ◽  
Yan Ling Tian ◽  
Z. Ren ◽  
H.Y. Zheng ◽  
R.B. Wei

Molecular dynamics (MD) simulations were used to investigate the elastic properties of carbon nanotubes (CNTs). Displacements were loaded to CNTs on the tension deformation simulations. In order to better understand the relationship between Young’s modulus and the structure of the CNTs, different chiralities and diameters were involved. It is found that the Young’s modulus will be no more sensitive as in the single-walled carbon nanotubes (SWCNTs) with increasing walls. The tension deformation results also indicate that SWCNTs have better elastic property compared to multi-walled carbon nanotubes (MWCNTs).


2017 ◽  
Vol 47 ◽  
pp. 106-119 ◽  
Author(s):  
Nataliya A. Sakharova ◽  
André F.G. Pereira ◽  
Jorge M. Antunes ◽  
José Valdemar Fernandes

The mechanical behaviour of non-chiral multi-walled carbon nanotubes under tensile and bending loading conditions was investigated. For this purpose, a simplified finite element model of armchair and zigzag multi-walled carbon nanotubes, which does not take into account the van der Waals forces acting between layers, was tested in order to evaluate their tensile and bending rigidities, as well as the Young’s modulus. The current numerical simulation results are compared with data reported in the literature. The robustness of the simplified model for evaluation of the Young’s modulus of multi-walled carbon nanotubes is discussed.


2010 ◽  
Vol 139-141 ◽  
pp. 9-12 ◽  
Author(s):  
Shiuh Chuan Her ◽  
Shun Wen Yeh

The effects of matrix stiffness and the content of multi-walled carbon nanotubes on the mechanical properties of the nanocomposites have been examined in this investigation. The matrix stiffness was controlled by changing the mixture ratio between the epoxy and hardener. Two different contents (1 wt.%. and 2 wt.%) of the multi-walled carbon nanotubes (MWCNT) were added to the epoxy matrix. Three-Point-Bending and Shore’s hardness tests were conducted to determine the Young’s modulus and hardness of the nanocomposites, respectively. Experimental results showed that the Young’s modulus of the nanocomposites was significantly increased with the increase of the addition of MWCNTs. However, the improvement of the hardness of the epoxy was insignificant with the addition of the MWCNTs. The reinforcement role of the multi-walled carbon nanotubes decreased while increasing the stiffness matrix.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1109-1114
Author(s):  
Peng Lv ◽  
Yeyun Meng ◽  
Lingxia Song ◽  
Hao Pang ◽  
Weiqu Liu

A robust self-supported electrode was prepared by a facile combination of ultrasonic dispersion and consequent in situ polymerization.


2021 ◽  
Author(s):  
Shankar S. Narwade ◽  
Shivsharan M. Mali ◽  
Bhaskar R. Sathe

A study on the in situ decoration of ethylenediamine (EDA) on acid functionalized multi-walled carbon nanotubes (O-MWCNTs) for overall water splitting reactions at all pH as an efficient and inexpensive metal-free multifunctional electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document