A Unique Structure of Highly Stable Interphase and Self‐Consistent Stress Distribution Radial‐Gradient Porous for Silicon Anode

2021 ◽  
pp. 2107897
Author(s):  
Zhiwei Yang ◽  
Chen Wu ◽  
Shi Li ◽  
Lang Qiu ◽  
Zuguang Yang ◽  
...  
1999 ◽  
Vol 173 ◽  
pp. 37-44
Author(s):  
M.D. Melita ◽  
A. Brunini

AbstractA self-consistent study of the formation of planetary bodies beyond the orbit of Saturn and the evolution of Kuiper disks is carried out by means of an N-body code where accretion and gravitational encounters are considered. This investigation is focused on the aggregation of massive bodies in the outer planetary region and on the consequences of such process in the corresponding cometary belt. We study the link between the bombardment of massive bodies and mass depletion and eccentricity excitation.


Author(s):  
B. Van Meerbeek ◽  
L. J. Conn ◽  
E. S. Duke

Restoration of decayed teeth with tooth-colored materials that can be bonded to tooth tissue has been a highly desirable property in restorative dentistry for many years. Advantages of such an adhesive restorative technique over conventional techniques using non-adhesive metal-based restoratives include improved restoration retention with minimal sacrifice of sound tooth tissue for retention purposes, superior adaptation and sealing of the restoration margins in prevention of caries recurrence, improved stress distribution across the tooth-restoration interface throughout the whole tooth, and even reinforcement of weakened tooth structures. The dental adhesive technology is rapidly changing. An efficient resin bond to enamel has already long been achieved. Its bonding mechanism has been fully elucidated and has proven to be a durable and reliable clinical treatment. However, bonding to dentin represents a greater challenge. After the failures of a dentin acid-etch technique in imitation of the enamel phosphoric-acid-etch technique and a bonding procedure based on chemical adhesion, modern dentin adhesives are currently believed to bond to dentin by a micromechanical hybridization process. This process is developed by an initial demineralization of the dentin surface layer with acid etchants exposing a collagen fibril arrangement with interfibrillar microporosities that subsequently become impregnated by low-viscosity monomers. Although the development of such a hybridization process has well been documented in the literature, questions remain with respect to parameters of-primary importance to adhesive efficacy.


2002 ◽  
Vol 5 ◽  
pp. 65-65
Author(s):  
S. Liberatore ◽  
J.-P.J. Lafon ◽  
N. Berruyer

1959 ◽  
Vol 56 ◽  
pp. 250-256 ◽  
Author(s):  
Sylvette Besnainou ◽  
Monique Roux
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document