In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices

2014 ◽  
Vol 26 (17) ◽  
pp. 2699-2703 ◽  
Author(s):  
Xiaorui Zheng ◽  
Baohua Jia ◽  
Xi Chen ◽  
Min Gu
2014 ◽  
Author(s):  
L. Bi ◽  
J. Hu ◽  
H.S. Kim ◽  
G.F. Dionne ◽  
C.A. Ross ◽  
...  

Author(s):  
Baohua Jia ◽  
Xiaorui Zheng ◽  
Han Lin ◽  
Yunyi Yang ◽  
Scott Fraser

2021 ◽  
Vol 8 (1) ◽  
pp. 015601
Author(s):  
M Świniarski ◽  
A Wróblewska ◽  
A Dużyńska ◽  
M Zdrojek ◽  
J Judek

Author(s):  
Ivan A. Komarov ◽  
Nikolay S. Struchkov ◽  
Denis D. Levin ◽  
Gennadiy O. Silakov ◽  
Eduard E. Danelyan ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 485-497 ◽  
Author(s):  
Muhammad Jawad ◽  
Abdul Faheem Khan ◽  
Amir Waseem ◽  
Afzal Hussain Kamboh ◽  
Muhammad Mohsin ◽  
...  

2001 ◽  
Author(s):  
M. A. Haque ◽  
M. T. A. Saif

Abstract We present a MEMS-based technique for in-situ uniaxial tensile testing of freestanding thin films inside SEM and TEM. It integrates a freestanding thin film specimen with MEMS force sensors and structures to produce an on-chip tensile testing facility. Cofabrication of the specimen with force and displacement measuring mechanisms produces the following unique features: 1) Quantitative experimentation can be carried out in both SEM and TEM, 2) No extra gripping mechanism is required, 3) Specimen misalignment can be eliminated, 4) Pre-stress in specimen can be determined, and 5) Specimens with micrometer to nanometer thickness can be tested. We demonstrate the technique by testing a 200-nanometer thick Aluminum specimen in-situ in SEM. Significant strengthening and anelasticity were observed at this size scale.


Sign in / Sign up

Export Citation Format

Share Document