A Novel MEMS-Based Technique for In-Situ Characterization of Freestanding Nanometer Scale Thin Films Inside SEM and TEM
Abstract We present a MEMS-based technique for in-situ uniaxial tensile testing of freestanding thin films inside SEM and TEM. It integrates a freestanding thin film specimen with MEMS force sensors and structures to produce an on-chip tensile testing facility. Cofabrication of the specimen with force and displacement measuring mechanisms produces the following unique features: 1) Quantitative experimentation can be carried out in both SEM and TEM, 2) No extra gripping mechanism is required, 3) Specimen misalignment can be eliminated, 4) Pre-stress in specimen can be determined, and 5) Specimens with micrometer to nanometer thickness can be tested. We demonstrate the technique by testing a 200-nanometer thick Aluminum specimen in-situ in SEM. Significant strengthening and anelasticity were observed at this size scale.