Experimental Characterization of Microfabricated Thermoelectric Energy Harvesters for Smart Sensor and Wearable Applications

2018 ◽  
Vol 3 (6) ◽  
pp. 1700383 ◽  
Author(s):  
Marc T. Dunham ◽  
Michael T. Barako ◽  
Jane E. Cornett ◽  
Yuan Gao ◽  
Samer Haidar ◽  
...  
2018 ◽  
Vol 211 ◽  
pp. 05002
Author(s):  
Patricio Peralta ◽  
Rafael O. Ruiz ◽  
Viviana Meruane

In the last decade, several numerical and analytic procedures have been proposed to predict the dynamic behavior of piezoelectric energy har- vesters (PEHs). Nevertheless, PEHs present characteristics that are di ffi cult to control in their manufacturing process, for example the electromechanical properties of the materials present variations up to 20% of their nominal val- ues. In that sense, the use of deterministic models to obtain accurate predictions implies to have full information about the geometry and the electromechanical properties. This work introduces a procedure to update the electromechani- cal properties of PEHs based on Bayesian updating techniques. The procedure requires the use of: (i) a predictive model, (ii) a prior multivariate probabilis- tic density function for the electromechanical properties, and (iii) experimen- tal measurements of the harvester response. The mode of the updated elec- tromechanical properties is identified adopting a Maximum a Posteriori esti- mate while the probability density function associated is obtained by applying a Laplace’s asymptotic approximation. The procedure is exemplified using the experimental characterization of 20 nominally identical PEHs. Results show the capability of the procedure to update not only the electromechanical proper- ties of each PEH but also the characteristics of the whole sample of harvesters (mandatory information for design purposes).


2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 16-25
Author(s):  
J. P. Wojno ◽  
T. J. Mueller ◽  
W. K. Blake

Sign in / Sign up

Export Citation Format

Share Document