Influence of Iron Oxide Brown on Smoke-Suppression Properties and Combustion Behavior of Intumescent Flame-Retardant Epoxy Composites

2015 ◽  
Vol 34 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xilei Chen ◽  
Lei Liu ◽  
Chuanmei Jiao
RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20391-20402
Author(s):  
Chen Cheng ◽  
Yanling Lu ◽  
Weining Ma ◽  
Shaojie Li ◽  
Jun Yan ◽  
...  

Red phosphorus was coated by a polydopamine/melamine composite shell structure, which constituted an intumescent flame retardant with superior flame retardance and smoke suppression performance for epoxy resin.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chenkai Zhu ◽  
Lei Nie ◽  
Xiaofei Yan ◽  
Jiawei Li ◽  
Dongming Qi

Abstract In this work, the structure of composite was designed as Core Stack and Surface Stack, which was treated with the expandable graphite (EG) and metal oxides such as iron oxide (IO), hydroxyapatite (HA), and aluminum tri-hydroxide (ATH). The mechanical performance of composites was characterized via flexural performance and interlaminar shear strength analysis. The flame retardance and smoke suppression of composite was explored in detail by LOI, UL-94, and cone calorimeter test. The findings presented that flexural properties of composites were observed to decrease due to delamination of surface stack, whilst no significant effect on interlaminar shear strength. In comparison with control composite, the loading of metal oxide into composite Surface Stack led to the reduction of peak heat release rate, total heat release, and fire growth index effectively. Moreover, the remarkable decrease in total smoke production could be observed due to the addition of iron oxide and the flame retardant mechanism was discussed. This study was the preliminary exploration of composite with flame retardant design which could be potential solution to improve flame retardancy and smoke suppression of composite with better mechanical structure preservation.


Sign in / Sign up

Export Citation Format

Share Document