scholarly journals Fast Charging Limits of Ideally Stable Metal Anodes in Liquid Electrolytes

2022 ◽  
pp. 2102967
Author(s):  
Bingyuan Ma ◽  
Peng Bai
2018 ◽  
Author(s):  
Wooseok Go ◽  
Min-Ho Kim ◽  
Jehee Park ◽  
Chek Hai Lim ◽  
Youngsik Kim ◽  
...  

Nature Energy ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Chengbin Jin ◽  
Tiefeng Liu ◽  
Ouwei Sheng ◽  
Matthew Li ◽  
Tongchao Liu ◽  
...  

Author(s):  
Kuirong Deng ◽  
Tianyu Guan ◽  
Fuhui Liang ◽  
Xiaoqiong Zheng ◽  
Qingguang Zeng ◽  
...  

Solid-state lithium metal batteries (LMBs) assembled with polymer electrolytes (PEs) and lithium metal anodes are promising batteries owing to their enhanced safeties and ultrahigh theoretical energy densities. Nevertheless, polymer electrolytes...


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1732
Author(s):  
Dan Zhao ◽  
Qian Zhao ◽  
Zhenyu Wang ◽  
Lan Feng ◽  
Jinying Zhang ◽  
...  

Potassium-ion batteries (KIBs) have come up as a potential alternative to lithium-ion batteries due to abundant potassium storage in the crust. Red phosphorus is a promising anode material for KIBs with abundant resources and high theoretical capacity. Nevertheless, large volume expansion, low electronic conductivity, and limited K+ charging speed in red phosphorus upon cycling have severely hindered the development of red phosphorus-based anodes. To obtain improved conductivity and structural stability, surface engineering of red phosphorus is required. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated red phosphorus nanospheres (RPNP@PEDOT) with an average diameter of 60 nm were synthesized via a facile solution-phase approach. PEDOT can relieve the volume change of red phosphorus and promote electron/ion transportation during charge−discharge cycles, which is partially corroborated by our DFT calculations. A specific capacity of 402 mAh g−1 at 0.1 A g−1 after 40 cycles, and a specific capacity of 302 mAh g−1 at 0.5 A g−1 after 275 cycles, were achieved by RPNP@PEDOT anode with a high pseudocapacitive contribution of 62%. The surface–interface engineering for the organic–inorganic composite of RPNP@PEDOT provides a novel perspective for broad applications of red phosphorus-based KIBs in fast charging occasions.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


Sign in / Sign up

Export Citation Format

Share Document