Scale-up criteria for stirred tank reactors

AIChE Journal ◽  
1969 ◽  
Vol 15 (6) ◽  
pp. 843-853 ◽  
Author(s):  
J. J. Evangelista ◽  
Stanley Katz ◽  
Reuel Shinnar
2001 ◽  
Vol 47 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Yuxin Wang ◽  
Rafael Vazquez-Duhalt ◽  
Michael A Pickard

We were looking for a strain of Bjerkandera adusta that produces high titres of manganese peroxidase under optimal conditions for large-scale enzyme purification. We have chosen two strains from the University of Alberta Microfungus Collection and Herbarium, UAMH 7308 and 8258, and compared the effects of growth conditions and medium composition on enzyme production with the well-characterized strain BOS55 (ATCC 90940). Of four types of cereal bran examined, rice bran at 3% (w/v) in 60 mM phosphate buffer pH 6 supported the highest levels of enzyme production. Using 100 mL medium in 500-mL Erlenmeyer flasks, maximum enzyme levels in the culture supernatant occurred after about 10 days of growth; 5.5 U·mL–1 for UAMH 7308, 4.4 U·mL–1 for UAMH 8258, and 1.7 U·mL–1 for BOS55, where units are expressed as micromoles of Mn-malonate formed per minute. Growth as submerged cultures in 10-L stirred tank reactors produced 3.5 U·mL–1 of manganese peroxidase (MnP) by UAMH 8258 and 2.5 U·mL–1 of MnP by 7308, while enzyme production by BOS55 was not successful in stirred tank reactors but could be scaled up in 2-L shake flasks containing 400 mL rice bran or glucose – malt – yeast extract (GMY) – Mn-glycolate medium to produce MnP levels of 1.7 U·mL–1. These results show that the two strains of B. adusta, UAMH 7308 and 8258, can produce between two and three times the manganese peroxidase level of B. adusta BOS55, that they are good candidates for scale up of enzyme production, and that the rice bran medium supports higher levels of enzyme production than most previously described media.Key words: growth conditions, cereal bran, manganese peroxidase, Bjerkandera adusta, white rot fungi.


2012 ◽  
Vol 516-517 ◽  
pp. 763-768 ◽  
Author(s):  
Rong Chang Wang ◽  
Shuang Lin Dai ◽  
Yun Fei Tang ◽  
Jian Fu Zhao

The research study is aimed at the characterization of the hydrodynamics of a novel membrane-aerated reactor. Hydrodynamics was determined by means of impulse tracer trials in clean reactor and calculating residence time distribution (RTD) curves at different recirculation flow rates and hydraulic retention time. Thus the typical RTD curves were analyzed to calculate the average residence time, the dimensionless variance, the number of stirred tank reactors in series, and the dispersion number.The results showed that the hydraulic characteristics in the membrane-aerated reactor was essentially correlated with circulation rate. With the circulation velocity increasing, the number of stirred tank reactors in series decreased gradually, approaching to 1, while the dispersion number increased up to 0.2. It was concluded that the flow patterns within the membrane-aerated reactor are perfectly mixed under all the conditions tested. A simple correlation between the Reynolds number and the mixing was developed which can be used for design and scale-up purposes.


2003 ◽  
pp. 203-224 ◽  
Author(s):  
Rosanne L. Tom ◽  
Antoine W. Caron ◽  
Bernard Massie ◽  
Amine A. Kamen

2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


Sign in / Sign up

Export Citation Format

Share Document