Experimental measurements of loss coefficients in the entrance region of a pipe for viscous power law and viscoelastic fluids

AIChE Journal ◽  
1970 ◽  
Vol 16 (6) ◽  
pp. 1088-1091 ◽  
Author(s):  
D. V. Boger ◽  
A. V. Ramamurthy
2006 ◽  
Vol 129 (1) ◽  
pp. 80-87 ◽  
Author(s):  
A. Duncan Walker ◽  
Jon F. Carrotte ◽  
James J. McGuirk

In this paper we use experimental measurements to characterize the extent that improved the external aerodynamic performance (reduced total pressure loss, increased flow quality) of a gas-turbine combustion system may be achieved by adopting an integrated OGV/prediffuser technique. Two OGV/prediffuser combinations were tested. The first is a datum design corresponding to a conventional design approach, where the OGV and prediffuser are essentially designed in isolation. The second is an “integrated” design where the OGV blade shape has been modified, following recommendations of earlier CFD work (Final Report No. TT03R01, 2003), to produce a secondary flow/wake structure that allows the prediffuser to operate at a higher area ratio without boundary layer separation. This is demonstrated to increase static pressure recovery and reduce dump losses. Experimental measurements are presented on a fully annular rig. Several traverse planes are used to gather five-hole probe data that allow the flow structure through the OGV, at the inlet and exit of the prediffuser, and in the inner/outer annulus supply ducts to be examined. Both overall performance measures (loss coefficients) and measures of flow uniformity and quality are used to demonstrate that the integrated design is superior.


2020 ◽  
pp. 176-176
Author(s):  
Subkhanverdi Emirov ◽  
Abutrab Aliverdiev ◽  
Vetlugin Beybalaev ◽  
Anise Amirova

The results of experimental measurements of the temperature dependence of the effective thermal conductivity of various granite samples obtained by the absolute stationary method in the temperature and pressure ranges of 273- 523 K and 0.1-400 MPa, respectively, are analyzed. The power-law character of the temperature dependence of the effective thermal conductivity for all measured granite samples at atmospheric pressure is established. We have shown that pressure significantly affects the power law of the temperature dependence of the effective thermal conductivity of granite samples. A low-parameter description of the temperature-pressure behavior of thermal conductivity is proposed. A correlation is established between its components.


Sign in / Sign up

Export Citation Format

Share Document