Local heat transfer coefficients for a horizontal tube in a large-particle fluidized bed at elevated temperature

AIChE Journal ◽  
1984 ◽  
Vol 30 (3) ◽  
pp. 482-485 ◽  
Author(s):  
A. H. George ◽  
J. R. Welty
Author(s):  
C. Aprea ◽  
A. Greco ◽  
G. P. Vanoli

R22 is the most widely employed HCFC working fluid in vapour compression plant. HCFCs must be replaced within 2020. Major problems arise with the substitution of the working fluids, related to the decrease in performance of the plant. Therefore, extremely accurate design procedures are needed. The relative sizing of each of the components of the plant is crucial for cycle performance. For this reason, the knowledge of the new fluids heat transfer characteristics in condensers and evaporators is required. The local heat transfer coefficients and pressure drop of pure R22 and of the azeotropic mixture R507 (R125-R143a 50%/50% in weight) have been measured during convective boiling. The test section is a smooth horizontal tube made of a with a 6 mm I.D. stainless steel tube, 6 m length, uniformly heated by Joule effect. The effects of heat flux, mass flux and evaporation pressure on the heat transfer coefficients are investigated. The evaporating pressure varies within the range 3 ÷10 bar, the refrigerant mass flux within the range 200 ÷ 1000 kg/m2s, the heat flux within 0 ÷ 44 kW/m2. A comparison have been carried out between the experimental data and those predicted by means of the most credited literature relationships.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
A. Rabah ◽  
S. Kabelac

Local heat transfer coefficients for flow boiling of pure 1,1,1,2-tetrafluoroethane (R134a) and binary mixtures of propane (R290) and R134a were measured. The experimental setup employed a vapor heated plain horizontal tube (di=10mm, do=12mm, L=500mm). The measurements covered a wide range of saturation temperatures (233≤Ts≤278K), mass fluxes (100≤ṁ≤300kg∕m2s), qualities (0≤ẋ≤1), and concentrations (0≤z̃≤0.65). In the zeotropic region of R134a/R290 mixtures, the measured local heat transfer coefficient was found to show a maximum decrease by a factor of 2 relative to that for pure R134a. At the azeotropic point (65% R290), it was found to increase by a factor of 1.2. The measured local heat transfer coefficients for both R134a and R134a/R290 were compared with a number of correlations.


1986 ◽  
Vol 108 (4) ◽  
pp. 907-912 ◽  
Author(s):  
A. Goshayeshi ◽  
J. R. Welty ◽  
R. L. Adams ◽  
N. Alavizadeh

An experimental study is described in which time-averaged local heat transfer coefficients were obtained for arrays of horizontal tubes immersed in a hot fluidized bed. Bed temperatures up to 1005 K were achieved. Bed particle sizes of 2.14 mm and 3.23 mm nominal diameter were employed. An array of nine tubes arranged in three horizontal rows was used. The 50.8 mm (2 in.) diameter tubes were arranged in an equilateral triangular configuration with 15.24 cm (6 in.) spacing between centers. The center tube in each of the three rows in the array was instrumented providing data for local heat flux and surface temperature at intervals of 30 deg from the bottom to the top—a total of seven sets of values for each of the center tubes. The three sets of data are representative of the heat transfer behavior of tubes at the bottom, top, and in the interior of a typical array. Data were also obtained for a single horizontal tube to compare with the results of tube bundle performance. Superficial velocities of high-temperature air ranged from the packed-bed condition through approximately twice the minimum fluidization level. Comparisons with results for a single tube in a bubbling bed indicate only slight effects on local heat transfer resulting from the presence of adjacent tubes. Tubes in the bottom, top, and interior rows also exhibited different heat transfer performance.


1988 ◽  
Vol 110 (4a) ◽  
pp. 976-981 ◽  
Author(s):  
M. K. Jensen ◽  
J.-T. Hsu

Boiling heat transfer outside of a section of a uniformly heated horizontal tube bundle in an upward crossflow was investigated using R-113 as the working fluid. The inline tube bundle had five columns and 27 rows with a pitch-to-diameter ratio of 1.3. Heat transfer coefficients obtained from the 14 instrumented tubes are reported for a range of fluid and flow conditions; slightly subcooled liquid inlet conditions were used. At most heat fluxes there was no significant variation in the local heat transfer coefficients throughout the tube bundle. However, at low heat fluxes and mass velocities, the heat transfer coefficient increased at positions higher in the tube bundle. As pressure and mass velocity increased so did the heat transfer coefficients. For the local heat transfer coefficient, a Chen-type correlation is compared to the data; the data tend to be overpredicted by about 20 percent. Reasons for the overprediction are suggested.


Sign in / Sign up

Export Citation Format

Share Document