azeotropic point
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 5 (4) ◽  
pp. 71
Author(s):  
Alexander V. Klinov ◽  
Alexander V. Malygin ◽  
Alina R. Khairullina ◽  
Alisa R. Davletbaeva ◽  
Oleg O. Sazonov ◽  
...  

Amino ethers of ortho-phosphoric acid prepared using triethanolamine; ortho-phosphoric acid; polyoxyethylene glycol, diethylene glycol, triethylene glycol and glycerol (AEPA-DEG/TEG/Gl) were investigated as extractants for the separation of aqueous ethanol solutions by extractive distillation. Using the method of open evaporation, the influence of the molecular structure of AEPA-DEG/TEG/Gl on the conditions of vapor–liquid equilibrium in ethanol–water solutions was studied. It has been shown that the addition of AEPA-DEG/TEG/Gl removes the azeotropic point. At the same time, the observed effect turned out to be significantly higher in comparison with the use of pure glycerol or glycols for these purposes. The UNIFAC model was used to calculate the activity coefficients in a three-component ethanol–water–AEPA-DEG/TEG/Gl mixture. Within the framework of this model, a division of AEPA-DEG/TEG/Gl molecules into group components is proposed. Previously unknown parameters of the groups PO–CH, PO–CH2, PO–OCH2, PO–NHCH2, PO–OH, and PO–H2O were determined from our own and published experimental data. The concentration dependences of the density and dynamic viscosity of AEPA-Gl aqueous solutions have been experimentally measured. Experimental studies of the extractive distillation of ethanol–water using AEPA-Gl as an extractant have been carried out in a column with bubble cap plates and a packing, and its high efficiency has been established.



2021 ◽  
Vol 15 (2) ◽  
pp. 226-232
Author(s):  
Hosein Rouhandeh ◽  
◽  
Shahram Ghanbari Pakdehi ◽  

Isobaric vapor-liquid equilibrium (VLE) data for binary system of water + 2-azido-N,N-dimethylethanamine (DMAZ) was measured at 4 kPa. The results showed an azeotropic point at x1 = 0.985 and T = 302.17 K. The data was correlated with nonrandom two-liquid (NRTL), Wilson and universal quasi-chemical activity coefficient (UNIQUAC) models for the liquid phase. A comparison of the model performances was made using of the criterion of the average absolute deviation, standard deviation and mean standard deviation in boiling-point temperature. The results indicated that the NRTL activity coefficient model satisfactorily correlated the VLE data.



Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 729
Author(s):  
Karina Schuldt ◽  
Torsten Brinkmann ◽  
Prokopios Georgopanos

The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process.



Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1298
Author(s):  
H.G. Premakshi ◽  
Mahadevappa Y. Kariduraganavar ◽  
Geoffrey R. Mitchell

Sodium alginate (NaAlg) based membranes were prepared using a solution technique, crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-MA). Subsequently, the membranes were modified by the incorporation of 0, 10, 20, 30 and 40% w/w of titanium dioxide with respect to sodium alginate. The membranes thus obtained were designated as M, M-1, M-2, M-3 and M-4, respectively. An equilibrium swelling experiment was performed using different compositions of the water and isopropanol mixtures. Subsequently, we used a pervaporation cell fitted with each membrane in order to evaluate the extent of the pervaporation dehydration of isopropanol. Among the membranes studied, the membranes containing 40 mass% of titanium dioxide exhibited the highest separation factor(α) of 24,092, with a flux(J) of 18.61 × 10−2 kg/m2∙h at 30 °C for 10 mass% w/w of water in the feed. The total flux and the flux of water were found to overlap with each other, indicating that these membranes can be effectively used to break the azeotropic point of water–isopropanol mixtures. The results clearly indicate that these nanocomposite membranes exhibit an excellent performance in the dehydration of isopropanol. The activation energy values obtained for the water permeation were significantly lower than those of the isopropanol permeation, underlining that these membranes have a high separation ability for the water–isopropanol system. The estimated activation energies for total permeation (EP) and total diffusion (ED) values ranged between 10.60 kJ∙mol−1 and 3.96 kJ∙mol−1, and 10.76 kJ∙mol−1 and 4.29 kJ∙mol−1, respectively. The negative change in the enthalpy values for all the membranes indicates that sorption was mainly dominated by Langmuir’s mode of sorption.



Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 290
Author(s):  
Jesse Y. Rumbo Morales ◽  
Alan F. Perez Vidal ◽  
Gerardo Ortiz Torres ◽  
Alexis U. Salas Villalobo ◽  
Felipe de J. Sorcia Vázquez ◽  
...  

Adsorption processes are characterized by their kinetics and equilibrium isotherms described by mathematical models. Nowadays, adsorption with molecular sieves is a method used to separate certain elements or molecules from a mixture and produce hydrogen, nitrogen, oxygen, ethanol, or water treatment. This study had two main objectives. The first one was focused on the use of different natural (Clinoptilolite-S.L. Potosi, Clinoptilolite-Puebla, and Heulandite-Sonora) and synthetic (Zeolite Type 3A) adsorbents to separate the mixtures H 2 O / H 2 S O 4 and H 2 O / C 2 H 5 O H . It was determined that both Zeolite Type-3A and Heulandite-Sonora have greater adsorption capacity in a shorter time compared with the Clinoptilolites at different temperatures. The second objective was the simulation of a pressure swing adsorption process to dehydrate ethanol using the parameters obtained from Zeolite Type 3A (with maximum adsorption capacity). Several configurations were considered to calculate the appropriate nominal values for the optimal process. The results illustrate that the purity of ethanol is increased when the following parameters are considered in the adsorption process: a high pressure, a constant temperature between 100 and 120 ° C, a feed composition near the azeotropic point with lower water content, and a purge pressure near the vacuum. Finally, the results show that it is possible to take advantage of the length of the absorber bed in order to reduce the energy costs by increasing the ethanol production as well as complying with the international purity standards.





2019 ◽  
Vol 8 (2) ◽  
pp. 133-143
Author(s):  
Dhoni Hartanto ◽  
Prima Astuti Handayani ◽  
Akhmad Sutrisno ◽  
Viona Widya Anugrahani ◽  
Asalil Mustain ◽  
...  

Isopropyl alcohol is widely used as industrial chemical intermediates and common solvents in households, pharmaceuticals, food, cosmetics, and medical purposes. The high purity of isopropyl alcohol requires special separation from its impurity i.e. water due to isopropyl alcohol and water form an azeotropic point, which is difficult to separate using a conventional distillation method. The azeotropic point of this mixture is at isopropyl alcohol mole fraction of 0.68 and temperature of 353.4 K. One of the optimum methods to separate an azeotrope point is through the extractive distillation which use a third component as a solvent. Glycerol is one of the solvents which can be used as a potential entrainer in the extractive distillation. Glycerol is produced in the biodiesel production as a by-product. Moreover, glycerol is an eco-friendly chemical. In this work, the simulation of the extractive distillation of isopropyl alcohol/water system with glycerol as an entrainer was simulated using Aspen Plus. The Non-Random Two-Liquid (NRTL) model was used as thermodynamic model in the simulation.  The effect of stage number, binary feed stage, entrainer feed stage, and reflux ratio to the purity of isopropyl alcohol, and reboiler-condenser duties were examined to achieve the optimum design for the extractive distillation column with less energy requirements. The simulation results showed that the optimum configurations in the extractive distillation column design are at 25 theoretical stages, binary feed stage (BFS) of 20, entrainer feed stage (EFS) of 2, and reflux ratio (RR) of 0.5 to produce isopropyl alcohol with the purity of 99.27%. The design and sizing of the extractive distillation column were also proposed in this work.



2019 ◽  
Vol 64 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Asmaa Selim ◽  
András József Tóth ◽  
Enikő Haáz ◽  
Dániel Fózer ◽  
Péter Mizsey

The features of pervaporation are continuously improved with the production of more and more efficient membranes. In our present study, silver nanoparticles are in-situ generated in a poly (vinyl alcohol) using solution-casting in order to enhance its capability for pervaporation. The membrane is tested on the case study of ethanol dehydration by pervaporation. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 % mass water at 40 °C are reported. Pervaporation data for nanocomposite membranes show around 100 % increase in the water permeance values while the intrinsic selectivity decreases that is typical for pervaporation membranes. The water permeances of original crosslinked PVA membrane and the 2.5 % silver loaded PVA membrane are 26.65 and 70.45 (g/m2.kPa.h), respectively. The values of total flux are closely related to water flux, showing that membranes could be successfully assigned to separate water from ethanol even at the azeotropic point. The influence of temperature on the efficiency of the pervaporation process, permeation parameter and diffusion coefficient of the feed component is also discussed. The negative heat of sorption (∆Hs) values calculated on the basis of the estimated Arrhenius activation energy values indicates that the sorption process is controlled by Langmuir's mode. Our results show that the 0.5 mass% silver loaded poly (vinyl alcohol) membrane exhibits excellent PV performance.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Obadah Said Solaiman ◽  
Ishak Hashim

In this study, we propose a modified predictor-corrector Newton-Halley (MPCNH) method for solving nonlinear equations. The proposed sixteenth-order MPCNH is free of second derivatives and has a high efficiency index. The convergence analysis of the modified method is discussed. Different problems were tested to demonstrate the applicability of the proposed method. Some are real life problems such as a chemical equilibrium problem (conversion in a chemical reactor), azeotropic point of a binary solution, and volume from van der Waals equation. Several comparisons with other optimal and nonoptimal iterative techniques of equal order are presented to show the efficiency of the modified method and to clarify the question, are the optimal methods always good for solving nonlinear equations?



Sign in / Sign up

Export Citation Format

Share Document