scholarly journals Neural Network Physically Unclonable Function: A Trainable Physically Unclonable Function System with Unassailability against Deep Learning Attacks Using Memristor Array

2021 ◽  
Vol 3 (11) ◽  
pp. 2170074
Author(s):  
Junkyu Park ◽  
Yoonji Lee ◽  
Hakcheon Jeong ◽  
Shinhyun Choi
2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Author(s):  
A John. ◽  
D. Praveen Dominic ◽  
M. Adimoolam ◽  
N. M. Balamurugan

Background:: Predictive analytics has a multiplicity of statistical schemes from predictive modelling, data mining, machine learning. It scrutinizes present and chronological data to make predictions about expectations or if not unexplained measures. Most predictive models are used for business analytics to overcome loses and profit gaining. Predictive analytics is used to exploit the pattern in old and historical data. Objective: People used to follow some strategies for predicting stock value to invest in the more profit-gaining stocks and those strategies to search the stock market prices which are incorporated in some intelligent methods and tools. Such strategies will increase the investor’s profits and also minimize their risks. So prediction plays a vital role in stock market gaining and is also a very intricate and challenging process. Method: The proposed optimized strategies are the Deep Neural Network with Stochastic Gradient for stock prediction. The Neural Network is trained using Back-propagation neural networks algorithm and stochastic gradient descent algorithm as optimal strategies. Results: The experiment is conducted for stock market price prediction using python language with the visual package. In this experiment RELIANCE.NS, TATAMOTORS.NS, and TATAGLOBAL.NS dataset are taken as input dataset and it is downloaded from National Stock Exchange site. The artificial neural network component including Deep Learning model is most effective for more than 100,000 data points to train this model. This proposed model is developed on daily prices of stock market price to understand how to build model with better performance than existing national exchange method.


Author(s):  
Shikha Bhardwaj ◽  
Gitanjali Pandove ◽  
Pawan Kumar Dahiya

Background: In order to retrieve a particular image from vast repository of images, an efficient system is required and such an eminent system is well-known by the name Content-based image retrieval (CBIR) system. Color is indeed an important attribute of an image and the proposed system consist of a hybrid color descriptor which is used for color feature extraction. Deep learning, has gained a prominent importance in the current era. So, the performance of this fusion based color descriptor is also analyzed in the presence of Deep learning classifiers. Method: This paper describes a comparative experimental analysis on various color descriptors and the best two are chosen to form an efficient color based hybrid system denoted as combined color moment-color autocorrelogram (Co-CMCAC). Then, to increase the retrieval accuracy of the hybrid system, a Cascade forward back propagation neural network (CFBPNN) is used. The classification accuracy obtained by using CFBPNN is also compared to Patternnet neural network. Results: The results of the hybrid color descriptor depict that the proposed system has superior results of the order of 95.4%, 88.2%, 84.4% and 96.05% on Corel-1K, Corel-5K, Corel-10K and Oxford flower benchmark datasets respectively as compared to many state-of-the-art related techniques. Conclusion: This paper depict an experimental and analytical analysis on different color feature descriptors namely, Color moment (CM), Color auto-correlogram (CAC), Color histogram (CH), Color coherence vector (CCV) and Dominant color descriptor (DCD). The proposed hybrid color descriptor (Co-CMCAC) is utilized for the withdrawal of color features with Cascade forward back propagation neural network (CFBPNN) is used as a classifier on four benchmark datasets namely Corel-1K, Corel-5K and Corel-10K and Oxford flower.


Sign in / Sign up

Export Citation Format

Share Document