Von willebrand disease with an increased ristocetin-induced platelet aggregation and a qualitative abnormality of the factor VIII protein

1980 ◽  
Vol 8 (3) ◽  
pp. 299-308 ◽  
Author(s):  
Hoyu Takahashi ◽  
Nobuo Sakuragawa ◽  
Akira Shibata
1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


Author(s):  
А.Ф. Кубиддинов ◽  
Д.С. Саидов ◽  
М.З. Тагожонов ◽  
А.А. Одинаев ◽  
З.Ф. Тагожонов ◽  
...  

Цель исследования: изучение параметров гемостаза у доноров для оптимизации использования компонентов крови у пациентов с нарушениями свертывания крови. Материалы и методы. Проанализированы результаты коагулологического исследования крови у 200 доноров. Контрольную группу составили 50 человек — здоровые люди (добровольцы), не доноры в возрасте от 20 до 60 лет. Измеряли: время свертывание крови по Ли-Уайту, активированное частичное тромбопластиновое время, международное нормализованное отношение, агрегацию тромбоцитов, антитромбин III (АТ-III), содержание фибриногена по Клаусу, фактор фон Виллебранда (ФВ), активность фактора VIII. Рассчитывали среднюю арифметическую и среднюю ошибку средней арифметической (М ± m), для оценки значимости различий средних величин использовали t-критерий Стьюдента, различия считали статистически значимыми при р < 0,05. Результаты. Оценка показателей гемостаза показала как развитие у доноров склонности к гиперкоагуляции, так и компенсаторную активацию антикоагулянтной системы. В зависимости от возраста и количества кровосдач агрегация тромбоцитов, АТ-III, содержание фибриногена, активность ФВ и фактора VIII в заготовленных компонентах крови получаются различными. Заключение. Трансфузионная терапия коагулопатий может быть оптимизирована за счет применения компонентов крови, целенаправленно заготовленных с учетом характера нарушений свертывания крови у реципиента. Aim: to optimize the usage of blood components in patients with coagulopathy we analyze some hemostasis parameters in donors. Materials and methods. In 200 donors and 50 healthy volunteers (aged from 20 to 60 years old) we analyzed hemostatic parameters: whole blood clotting time, activated partial thromboplastin time, international normalized ratio, platelet aggregation, antithrombin III (AT-III), Claus fibrinogen content, activity of von Willebrand factor (VWF) and factor VIII. The results obtained presented as M ± m. Statistical diff erences by Student test were considered as signifi cant for p < 0,05. Results. All donors had the tendency to hypercoagulation with compensatory activation of anticoagulant system. Depending on the age and number of blood donations, obtained blood components were diff erent in platelet aggregation, AT-III level, fibrinogen content, activity of VWF and factor VIII. Conclusion. Transfusion therapy of coagulopathies can be optimized through the use of blood components purposefully prepared taking into account the nature of blood clotting disorders in the recipient.


2018 ◽  
Vol 475 (17) ◽  
pp. 2819-2830 ◽  
Author(s):  
Małgorzata A. Przeradzka ◽  
Henriet Meems ◽  
Carmen van der Zwaan ◽  
Eduard H.T.M. Ebberink ◽  
Maartje van den Biggelaar ◽  
...  

The D′–D3 fragment of von Willebrand factor (VWF) can be divided into TIL′-E′-VWD3-C8_3-TIL3-E3 subdomains of which TIL′-E′-VWD3 comprises the main factor VIII (FVIII)-binding region. Yet, von Willebrand disease (VWD) Type 2 Normandy (2N) mutations, associated with impaired FVIII interaction, have been identified in C8_3-TIL3-E3. We now assessed the role of the VWF (sub)domains for FVIII binding using isolated D′, D3 and monomeric C-terminal subdomain truncation variants of D′–D3. Competitive binding assays and surface plasmon resonance analysis revealed that D′ requires the presence of D3 for effective interaction with FVIII. The isolated D3 domain, however, did not show any FVIII binding. Results indicated that the E3 subdomain is dispensable for FVIII binding. Subsequent deletion of the other subdomains from D3 resulted in a progressive decrease in FVIII-binding affinity. Chemical footprinting mass spectrometry suggested increased conformational changes at the N-terminal side of D3 upon subsequent subdomain deletions at the C-terminal side of the D3. A D′–D3 variant with a VWD type 2N mutation in VWD3 (D879N) or C8_3 (C1060R) also revealed conformational changes in D3, which were proportional to a decrease in FVIII-binding affinity. A D′–D3 variant with a putative VWD type 2N mutation in the E3 subdomain (C1225G) showed, however, normal binding. This implies that the designation VWD type 2N is incorrect for this variant. Results together imply that a structurally intact D3 in D′–D3 is indispensable for effective interaction between D′ and FVIII explaining why specific mutations in D3 can impair FVIII binding.


Author(s):  
И.В. Куртов ◽  
Е.С. Фатенкова ◽  
Н.А. Юдина ◽  
А.М. Осадчук ◽  
И.Л. Давыдкин

Болезнь Виллебранда (БВ) может представлять определенные трудности у рожениц с данной патологией. Приведены 2 клинических примера использования у женщин с БВ фактора VIII свертывания крови с фактором Виллебранда, показана эффективность и безопасность их применения. У одной пациентки было также показано использование фактора свертывания крови VIII с фактором Виллебранда во время экстракорпорального оплодотворения. Von Willebrand disease presents a certain hemostatic problem among parturients. This article shows the effectiveness and safety of using coagulation factor VIII with von Willebrand factor for the prevention of bleeding in childbirth in 2 patients with type 3 von Willebrand disease. In one patient, the use of coagulation factor VIII with von Willebrand factor during in vitro fertilization was also shown.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

Abstract The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 698-705 ◽  
Author(s):  
Takanori Moriki ◽  
Mitsuru Murata ◽  
Tetsuya Kitaguchi ◽  
Hironobu Anbo ◽  
Makoto Handa ◽  
...  

Abstract Platelet-type von Willebrand disease (vWD) is a congenital bleeding disorder characterized by heightened ristocetin-induced platelet aggregation caused by abnormally high affinity between the platelet membrane glycoprotein (GP) Ib/IX complex and von Willebrand factor (vWF ). Two distinct point mutations, Gly233 to Val and Met239 to Val, have been reported in GPIbα. We have constructed a recombinant GPIbα fragment containing the latter mutation, Met239 to Val (M239V) and characterized the mutant molecule using two methods, ie, interaction between soluble vWF and immobilized M239V and inhibition of platelet aggregation by purified soluble M239V. Spontaneous binding (ie, binding without any inducers) was observed between 125I-vWF and immobilized M239V but not between 125I-vWF and immobilized wild-type (WT) GPIbα. The addition of low concentrations of ristocetin (0.2 mg/mL) induced specific 125I-vWF binding to immobilized M239V, but not to WT GPIbα. At high concentrations of ristocetin (1.2 mg/mL), both WT GPIbα and M239V specifically bound to 125I-vWF. Thus, M239V reproduced the unique functional abnormality of the GPIb/IX complex in platelet-type vWD. Moreover, the purified soluble M239V inhibited platelet aggregation induced by low concentration of ristocetin (0.3 mg/mL) in platelet-rich plasma from a patient having Met239 to Val mutation, whereas purified WT did not. These results provide direct evidences that the reported point mutation is the responsible molecular basis of this disorder.


1981 ◽  
Author(s):  
J S Krauss ◽  
M Sheard

Normal human factor VIII is precipitated by the lectin concanavalin A (con A). In order to study this interaction pooled normal plasma has been subjected to crossed affinoimmunoelectrophoresis with con A in the first dimension and commercial antiserum to factor VIII in the second dimension. Both decreased anodal migration and decreased precipitin height of the factor VIII - related antigen (FVIIIR:ag) confirmed the precipation of FVIIIR:ag by con A.This technique, performed in conjunction with crossed immunoelectrophoresis (CIEP) of FVIIIR:ag, should prove useful in the analysis of von Willebrand disease (vWd) variants whose FVIIIR:ag has decreased carbonhydrate and, therefore, is poorly precipitated by con A.


Sign in / Sign up

Export Citation Format

Share Document