Analysis of biomonitoring data to assess employer compliance with OSHA's permissible exposure limits for air contaminants

Author(s):  
Aaron W. Tustin ◽  
Dawn L. Cannon
2008 ◽  
Vol 27 (3) ◽  
pp. 195-200 ◽  
Author(s):  
A Vyskocil ◽  
T Leroux ◽  
G Truchon ◽  
F Lemay ◽  
F Gagnon ◽  
...  

Organic solvents can cause hearing loss themselves or promote noise-induced hearing loss. The objective of this study was to review the literature on the effects of low-level exposure to trichloroethylene on the auditory system and consider its relevance for the occupational settings. Both human and animal investigations were evaluated only for realistic exposure concentrations based on the Quebec permissible exposure limits: 50 ppm 8-h time-weighed average exposure value (TWAEV) and 200 ppm short-term exposure value (STEV). In humans, the upper limit for considering ototoxicity data relevant to the occupational exposure situation was set at the STEV. Animal data were evaluated only for exposure concentrations up to 100 times the TWAEV. There is no convincing evidence of trichloroethylene-induced hearing losses in workers. In rats, trichloroethylene affects the auditory function mainly in the cochlear mid- to high-frequency range with a lowest observed adverse effect level (LOAEL) of 2000 ppm. No studies on ototoxic interaction after combined exposure to noise and trichloroethylene were identified in humans. In rats, supra-additive interaction was reported. Further studies with sufficient data on the trichloroethylene exposure of workers are necessary to make a definitive conclusion. In the interim, we recommend considering trichloroethylene as an ototoxic agent.


Author(s):  
Richard Lemen ◽  
Philip Landrigan

Sailors have long been known to experience high rates of injury, disease, and premature death. Many studies have shown asbestos-related diseases among shipyard workers, but few have examined the epidemiology of asbestos-related disease and death among asbestos-exposed sailors serving on ships at sea. Chrysotile and amphibole asbestos were used extensively in ship construction for insulation, joiner bulkhead systems, pipe coverings, boilers, machinery parts, bulkhead panels, and many other uses, and asbestos-containing ships are still in service. Sailors are at high risk of exposure to shipboard asbestos, because unlike shipyard workers and other occupationally exposed groups, sailors both work and live at their worksite, making asbestos standards and permissible exposure limits (PELs). based on an 8-hour workday inadequate to protect their health elevated risks of mesothelioma and other asbestos-related cancers have been observed among sailors through epidemiologic studies. We review these studies here.


AIHAJ ◽  
1990 ◽  
Vol 51 (10) ◽  
pp. A-679-A-686
Author(s):  
Harry J. Ettinger

2008 ◽  
Vol 24 (4) ◽  
pp. 241-246 ◽  
Author(s):  
A Vyskocil ◽  
T Leroux ◽  
G Truchon ◽  
F Lemay ◽  
M Gendron ◽  
...  

Organic solvents can produce ototoxic effects in both man and experimental animals. The objective of this study was to review the literature on the effects of low-level exposure to ethyl benzene on the auditory system and consider its relevance for the occupational settings. Both human and animal investigations were evaluated only for realistic exposure concentrations based on the permissible exposure limits. In Quebec, the Time-Weighed Average Exposure Value for 8 h (TWAEV) is 100 ppm (434 mg/m3) and the Short-Term Exposure Value for 15 min (STEV) is 125 ppm (543 mg/m3). In humans, the upper limit for considering ototoxicity data relevant to the occupational exposure situation was set at STEV. Animal data were evaluated only for exposure concentrations up to 100 times the TWAEV. In workers, there is no evidence of either ethyl benzene-induced hearing losses or ototoxic interaction after combined exposure to ethyl benzene and noise. In rats, ethyl benzene affects the auditory function mainly in the cochlear mid-frequency range and ototoxic interaction was observed after combined exposure to noise and ethyl benzene. Further studies with sufficient data on the ethyl benzene exposure of workers are necessary to make a definitive conclusion. Given the current evidence from animal studies, we recommend considering ethyl benzene as an ototoxic agent.


Sign in / Sign up

Export Citation Format

Share Document