air contaminants
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 53)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
pp. 1066-1102
Author(s):  
Ashok Kumar ◽  
Hamid Omidvarborna ◽  
Kaushik K. Shandilya

Climate records kept worldwide clearly show that ongoing changes are happening in our eco-systems. Such climate changes include temperature, precipitation, or sea level, all of which are expected to keep changing well into the future, thereby affecting human health, the environment, and the economy. The natural causes by themselves are not able to describe these changes, so to understand these, scientists are using a combination of state-of-the-science measurements and models. Human activities are a major contributor due to the release of different air contaminants through various activities. Air pollution is one case-in-point, a human-made factor that contributes to climate change by affecting the amount of incoming sunlight that is either reflected or absorbed by the atmosphere. An overview of modeling techniques used to relate air quality and climate change is presented. The discussion includes the role of air pollution levels affecting the climate. Emerging topics such as black carbon (BC), fine particulate matters (PMs), role of cook stove, and risk assessment are also covered.


2022 ◽  
Vol 350 ◽  
pp. 130768
Author(s):  
Hongli Ma ◽  
Tao Wang ◽  
Bolong Li ◽  
Weiyang Cao ◽  
Min Zeng ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. 774-793
Author(s):  
Nur Baitul Izati Rasli ◽  
Nor Azam Ramli ◽  
Mohd Rodzi Ismail

This study observed the influence of different ventilation, indoor and outdoor activities (i.e., cooking, praying, sweeping, gathering, and exhaust from motorcycle) between a bungalow house (i.e., stack and cross ventilation applications) and a terrace house (i.e., one-sided ventilation application). We appraised the indoor air quality (IAQ) and thermal comfort. We monitored the indoor air contaminants (i.e., TVOC, CO, CH2O, PM10, O3, and CO2) and specific physical parameters (i.e., T, RH, and AS) for four days in the morning (i.e., 6.00 a.m. – 9.00 a.m.), morning-evening (i.e., 11.00 a.m. – 2.00 p.m.), and evening-night (i.e., 5.00 p.m. – 8.00 p.m.) sessions. The results found that cooking activities are the major activities that contributed to the increase of the TVOC, CO, PM10, O3, and CO2 concentrations in the bungalow and terrace houses. However, IAQ exceeded the Industry Code of Practice on IAQ (ICOP) limit in the terrace house. The bungalow house applies stack and cross ventilation, double area, and a long pathway of indoor air contaminants movements. Besides that, the results indicated that cooking activities worsen the ventilation system because CO2 exceeded the ICOP limit on Day 2 at 74.1 % (evening-night session) and Day 3 at 13.2 % (morning session), 11% (morning-evening session), and 50.1 % (evening-night session). Moreover, the combination of mechanical (i.e., opened all fans) and natural ventilation (i.e., opened all doors, windows, and fans) is the best application in the house without a cooking ventilator with lower indoor air movement. Furthermore, the temperatures exceeding the ICOP limit of 23-26 °C for both bungalow and terrace houses could be lower indoor air movement, which is less than the ICOP limit of 0.15-0.5 m/s and high outdoor air temperature. Therefore, it is prudent to have an efficient ventilation system for acceptable indoor air quality and thermal comfort in the family house.


Environments ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Piero Ciccioli ◽  
Emanuele Pallozzi ◽  
Ettore Guerriero ◽  
Maria Adelaide Iannelli ◽  
Enrica Donati ◽  
...  

Residential air cleaners exploiting different technologies re commonly used today to remove air contaminants from indoor environments. Different methods have been developed in the USA and Europe to test their efficiency. The one used in the USA provides a more comprehensive view of indoor processes, because testing is performed in a large simulation chamber (28.5 m3), using anthropogenic emissions, such as cigarette smoke, to generate pollution. Testing rooms are also important to investigate new removal technologies, or to improve them. Since no such testing facilities exist in Italy, one of 12.4 m3 was built in which cigarette smoke, resuspended dust from agricultural soil and, for the first time, diesel exhaust emissions were used to generate indoor pollution. Performances were tested with two air cleaning systems, exploiting completely different removal technologies. Accurate values of decay rates of indoor pollutants were obtained using a suite of on-line and out-of-line monitors for the measurement of particulate matter, volatile organic compounds (VOCs) and some inorganic gases. Proton-transfer mass spectrometry (PTR-MS) provided an almost real-time detection of several VOCs and H2S, at trace levels (0.01 ppbv). A method using a common in vitro bioassay was developed to assess the ability of air cleaners to remove indoor toxic substances.


2021 ◽  
Author(s):  
Jingjing Fang ◽  
Kexian Li ◽  
Xinhong Xu ◽  
Xiaomeng Ren ◽  
Lu Jiang

The purpose of this study is to study the air contaminants in the cabins of underwater vehicle. The basic data help for the better research of the underwater vehicle cabin environment standard and the control strategy. Pretreatment and analysis method of volatile organic compounds was preconcentration combined with gas chromatography under the condition of liquid nitrogen and detected by chromatography-mass spectrometry. The pollution of particles, carbon monoxide and carbon dioxide during the underwater vehicle voyage were monitored by online monitoring instrument. Altogether 34 kinds of pollution components were detected, most of which were low in concentration. Some are low olfactory threshold or high toxic components, such as dimethyldisulfide, benzene, carbon disulfide, trichloromethane, and several reached to ppm level. The contamination of the particles was mainly fine particles and part cabins exceeded the national standard of indoor air quality. The highest concentration of carbon dioxide in accommodation space exceeded the permissible concentration of atmosphere composition aboard diesel underwater vehicle compartments. The increase submerged time made the environment in the cabins deteriorate. The concentration of trace contaminants may close to or beyond the relevant standards with the prolonged time. The volatile organic compounds, particles, carbon monoxide and carbon dioxide aggravated the air circumstance in the cabins. It should be determined the permissible concentration of air contaminants in underwater vehicle as soon as possible.


2021 ◽  
Author(s):  
Joydip Sengupta

In December 2019 the deadly pandemic COVID-19 traumatized mankind through its lethal impact. To seize the outbreak, nationwide/region-based lockdown strategies were adopted by most of the COVID-19 affected countries. This in turn resulted in restricted transportation via surface, water, and air, as well as significantly reduced working hours of the industry sectors, so on and so forth. The obvious outcome was a sudden discernible decline in atmospheric adulteration. Accordingly, the anthropogenic emissions at the global and regional/local scales were examined during the lockdown period by several researchers using both or either satellite-based and ground-based monitoring. Among several other air-contaminants, carbon has a dominant toxicological profile causing adverse health effects and thereby attracting researches interest in carbon-release probing during the systematic confinement period imposed by the ruling authorities across the globe. The results of those studies indicated a confirmed decline in carbon emission/concentration making the air more breathable for the period. In this review, the studies related to anthropogenic emissions of carbon during the lockdown period are accounted for by compiling the recently reported data from published articles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaime Pizarro ◽  
Pablo M. Vergara ◽  
Sergio Cerda ◽  
Raúl R. Cordero ◽  
Ximena Castillo ◽  
...  

AbstractThe chemical composition of snow provides insights on atmospheric transport of anthropogenic contaminants at different spatial scales. In this study, we assess how human activities influence the concentration of elements in the Andean mountain snow along a latitudinal transect throughout Chile. The concentration of seven elements (Al, Cu, Fe, Li, Mg, Mn and Zn) was associated to gaseous and particulate contaminants emitted at different spatial scales. Our results indicate carbon monoxide (CO) averaged at 20 km and nitrogen oxide (NOx) at 40 km as the main indicators of the chemical elements analyzed. CO was found to be a significant predictor of most element concentrations while concentrations of Cu, Mn, Mg and Zn were positively associated to emissions of NOx. Emission of 2.5 μm and 10 μm particulate matter averaged at different spatial scales was positively associated to concentration of Li. Finally, the concentration of Zn was positively associated to volatile organic compounds (VOC) averaged at 40 km around sampling sites. The association between air contaminants and chemical composition of snow suggests that regions with intensive anthropogenic pollution face reduced quality of freshwater originated from glacier and snow melting.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Mass. Hernaez ◽  
V Montalvo ◽  
A Garcia-Faura ◽  
B Marques ◽  
M López-Teijón

Abstract Study question Do air contaminant oscillations impair in vitro fertilization clinical results? Summary answer Oscillations of the main air contaminants (SO2, NO, NO2, O3, CO, PM10, C6H6) inside the IVF laboratory do not impair success rates. What is known already Pollution is a challenge that as humans we face around the world. Given the limited number of studies that demonstrate the effect of pollution into IVF treatments, the effect that air contaminants have on in vitro human gametes/embryos is not clear. IVF laboratories are designed to limit the stress that gametes and embryos suffer during culture and manipulation. Controlling temperature, humidity, light, and filtering the air is essential to have a successful IVF program. However, HEPA and active carbon filters are not enough to ensure that gametes/embryos are not exposed to contaminants, exposing them to potentially harmful gases and particles. Study design, size, duration Prospective study comprising treatments throughout 2019, recording levels of the main air contaminants (SO2, NO, NO2, O3, CO, PM10, C6H6) every 10 minutes inside the IVF laboratory in order to assess the effect of these pollutants. We included egg donor cycles without PGT-A. Participants/materials, setting, methods A total of 724 egg donation treatments were included. Using uninterrupted culture (Global, CooperSurgical) in time lapse incubators (Embryoscope, Vitrolife). A mean concentration of every pollutant during the 6 days of every treatment was calculated. We analyzed success rates such as fertilization rates, blastocyst rates, pregnancy rates, implantation rates, miscarriage rates, and live birth rates. Main results and the role of chance Our results show that no contaminant affects neither fertilization rates nor good quality blastocyst rates. The only pollutants that have an association with pregnancy rates are NO and CO (p = 0.014 y p = 0.021) in both the univariate and the multivariate statistical analysis. Still, this association is week and could be explained due to the large data set. When analyzing further data we do not find any association between the dose of contaminants and implantation rates, miscarriage rates nor live birth rates (p > 0.01) demonstrating that oscillations in levels of these contaminants do not affect clinical results. Our results differ with the results from a previous study where they detected an effect of SO2 and O3 when analyzing frozen embryo transfer results. This might be explained because the levels of these gases were lower in our clinic and the pregnancy and live birth rates are higher. Limitations, reasons for caution Although we measured the levels of the contaminants inside the IVF laboratory, we did not measure the levels inside the incubators. Wider implications of the findings: This results show that IVF success rates are not impaired by oscillations in air quality if the laboratory does use the necessary HEPA and active-carbon air filter systems. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document