Quantum Adiabatic Evolution: Symmetry‐Protected Quantum Adiabatic Evolution in Spontaneous Symmetry‐Breaking Transitions (Ann. Phys. 4/2020)

2020 ◽  
Vol 532 (4) ◽  
pp. 2070020
Author(s):  
Min Zhuang ◽  
Jiahao Huang ◽  
Yongguan Ke ◽  
Chaohong Lee
2021 ◽  
pp. 100453
Author(s):  
Hetian Chen ◽  
Di Yi ◽  
Ben Xu ◽  
Jing Ma ◽  
Cewen Nan

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1358
Author(s):  
Yiannis Contoyiannis ◽  
Michael P. Hanias ◽  
Pericles Papadopoulos ◽  
Stavros G. Stavrinides ◽  
Myron Kampitakis ◽  
...  

This paper presents our study of the presence of the unstable critical point in spontaneous symmetry breaking (SSB) in the framework of Ginzburg–Landau (G-L) free energy. Through a 3D Ising spin lattice simulation, we found a zone of hysteresis where the unstable critical point continued to exist, despite the system having entered the broken symmetry phase. Within the hysteresis zone, the presence of the kink–antikink SSB solitons expands and, therefore, these can be observed. In scalar field theories, such as Higgs fields, the mass of this soliton inside the hysteresis zone could behave as a tachyon mass, namely as an imaginary quantity. Due to the fact that groups Ζ(2) and SU(2) belong to the same universality class, one expects that, in future experiments of ultra-relativistic nuclear collisions, in addition to the expected bosons condensations, structures of tachyon fields could appear.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vadim Grinenko ◽  
Debarchan Das ◽  
Ritu Gupta ◽  
Bastian Zinkl ◽  
Naoki Kikugawa ◽  
...  

AbstractThere is considerable evidence that the superconducting state of Sr2RuO4 breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking, its onset temperature, TTRSB, is generally found to match the critical temperature, Tc, within resolution. In combination with evidence for even parity, this result has led to consideration of a dxz ± idyz order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding TTRSB = Tc, but it has a hard-to-explain horizontal line node at kz = 0. Therefore, s ± id and d ± ig order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain TTRSB ≈ Tc. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr2RuO4 under hydrostatic pressure, and Sr1.98La0.02RuO4 at zero pressure. Both hydrostatic pressure and La substitution alter Tc without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected, TTRSB should track changes in Tc, while if it is accidental, these transition temperatures should generally separate. We observe TTRSB to track Tc, supporting the hypothesis of dxz ± idyz order.


Sign in / Sign up

Export Citation Format

Share Document