Convergent Preparation of Enantiomerically Pure Polyalkylated Cyclopropane Derivatives

2008 ◽  
Vol 120 (36) ◽  
pp. 6971-6974 ◽  
Author(s):  
Adi Abramovitch ◽  
Louis Fensterbank ◽  
Max Malacria ◽  
Ilan Marek
ChemInform ◽  
2008 ◽  
Vol 39 (52) ◽  
Author(s):  
Adi Abramovitch ◽  
Louis Fensterbank ◽  
Max Malacria ◽  
Ilan Marek

2008 ◽  
Vol 47 (36) ◽  
pp. 6865-6868 ◽  
Author(s):  
Adi Abramovitch ◽  
Louis Fensterbank ◽  
Max Malacria ◽  
Ilan Marek

2003 ◽  
Vol 75 (5) ◽  
pp. 549-562 ◽  
Author(s):  
Armin de Meijere ◽  
S. I. Kozhushkov ◽  
A. A. Fokin ◽  
I. Emme ◽  
S. Redlich ◽  
...  

The structurally intriguing [4]- and [5]triangulanes have been prepared in enantiomerically pure form. Their surprisingly high specific rotations are well reproduced by DFT/SCI computations and stem from the fact that these hydrocarbons essentially are σ-helicenes (i.e., rigidly held helical arrangements of σ-bonds). Some light is shed on the properties of radical cations derived from [3]- and [4]rotanes. While the former adopts Cs or C2v symmetry, the latter retains the D4h symmetry of the neutral hydrocarbon, according to highlevel computations. Experimental and computational evidence is also presented that the antiaromatic cyclopentadienyl cation is stabilized as a singlet ground state by five cyclopropyl substituents. Yet, the three cyclopropyl groups in tricyclopropylamine do not favor the formation of its radical cation, because they are not in the proper orientation. When this amine radical cation is generated by cobalt γ-irradiation in a Freon matrix, evidence for a significant conformational change is obtained by EPR spectroscopy. Finally, the conformational dynamics of the newly prepared crowded molecules tetracyclopropyl- and tetraisopropylmethane are discussed.


Synlett ◽  
1991 ◽  
Vol 1991 (04) ◽  
pp. 310-312
Author(s):  
Patrizia Ferraboschi ◽  
Daria Brembilla ◽  
Paride Grisenti ◽  
Enzo Santaniello

2020 ◽  
Vol 24 (8) ◽  
pp. 900-908
Author(s):  
Ram Naresh Yadav ◽  
Amrendra K Singh ◽  
Bimal Banik

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.


2005 ◽  
Vol 70 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Dušan Drahoňovský ◽  
Petr Štěpnička ◽  
Dalimil Dvořák

P-Chiral (S,RP)-2-{1'-[butyl(phenyl)phosphanyl]ferrocen-1-yl}-4-isopropyl-4,5-dihydrooxazole (6) and (S,SP)-2-{1'-[butyl(phenyl)phosphanyl]ferrocen-1-yl}-4-isopropyl-4,5-dihydrooxazole (7) were prepared by the procedure developed by Jugé, starting from enantiomerically pure (-)- or (+)-ephedrine and dichloro(phenyl)phosphine. Compounds 6 and 7 were examined for asymmetric induction in the Pd-catalyzed reaction of rac-1,3-diphenylallyl acetate with dimethyl malonate. The best results were obtained with 7 (98% ee), while 6 gave 82% ee.


2006 ◽  
Vol 71 (10) ◽  
pp. 1470-1483 ◽  
Author(s):  
David Šaman ◽  
Pavel Kratina ◽  
Jitka Moravcová ◽  
Martina Wimmerová ◽  
Zdeněk Wimmer

Glucosylation of the cis- and trans-isomers of 2-(4-methoxybenzyl)cyclohexan-1-ol (1a/1b, 2a/2b, 1a or 2a) was performed to prepare the corresponding alkyl β-D-glucopyranosides, mainly to get analytical data of pure enantiomers of the glucosides (3a-6b), required for subsequent investigations of related compounds with biological activity. One of the employed modifications of the Koenigs-Knorr synthesis resulted in achieving 85-95% yields of pure β-anomers 3a/3b, 4a/4b, 3a or 4a of protected intermediates, with several promoters and toluene as solvent, yielding finally the deprotected products 5a/5b, 6a/6b, 5a or 6a as pure β-anomers. To obtain enantiomerically pure β-anomers of the target structure (3a, 4a, 5a and 6a) for unambiguous structure assignment, an enzymic reduction of 2-(4-methoxybenzyl)cyclohexan-1-one by Saccharomyces cerevisiae whole cells was performed to get (1S,2S)- and (1S,2R)-enantiomers (1a and 2a) of 2-(4-methoxybenzyl)cyclohexan-1-ol. The opposite enantiomers of alkyl β-D-glucopyranosides (5b and 6b) were obtained by separation of the diastereoisomeric mixtures 5a/5b and 6a/6b by chiral HPLC. All stereoisomers of the products (3a-6b) were subjected to a detailed 1H NMR and 13C NMR analysis.


2004 ◽  
Vol 69 (4) ◽  
pp. 885-896 ◽  
Author(s):  
Luisa Stella Dolci ◽  
Péter Huszthy ◽  
Erika Samu ◽  
Marco Montalti ◽  
Luca Prodi ◽  
...  

Enantiomerically pure dimethyl- and diisobutyl-substituted phenazino-18-crown-6 ligands bind metal and ammonium ions and also primary aralkylammonium perchlorates in acetonitrile with high affinity, causing pronounced changes in their luminescence properties. In addition, they show enantioselectivity towards chiral primary aralkylammonium perchlorates. The possibility to monitor the binding process by photoluminescence spectroscopy can gain ground for the design of very efficient enantioselective chemosensors for chiral species. The observed changes in the photophysical properties are also an important tool for understanding the interactions present in the adduct.


Sign in / Sign up

Export Citation Format

Share Document