Tunable Molecular Assembly Codes Direct Reaction Pathways

2008 ◽  
Vol 47 (40) ◽  
pp. 7705-7709 ◽  
Author(s):  
Andrew D. Shaller ◽  
Wei Wang ◽  
Haiyang Gan ◽  
Alexander D. Q. Li
2008 ◽  
Vol 120 (40) ◽  
pp. 7819-7823 ◽  
Author(s):  
Andrew D. Shaller ◽  
Wei Wang ◽  
Haiyang Gan ◽  
Alexander D. Q. Li

2020 ◽  
Author(s):  
Martin Juhl ◽  
Allan Petersen ◽  
JIWOONG LEE

Thermodynamic and kinetic control of a chemical process is the key to access desired products and states. Changes are made when desired product is not accessible; one may manipulate the reaction with additional reagents, catalysts and/or protecting groups. Here we report the use of carbon dioxide to direct reaction pathways in order to selectively afford desired products in high reaction rates while avoiding the formation of byproducts. The utility of CO<sub>2</sub>-mediated selective cyanohydrin synthesis was further showcased by broadening Kiliani-Fischer synthesis to offer an easy access to variety of polyols, cyanohydrins, linear alkylnitriles, by simply starting from alkyl- and arylaldehydes, KCN and atmospheric pressure of CO<sub>2</sub>.


2020 ◽  
Author(s):  
Martin Juhl ◽  
Allan Petersen ◽  
JIWOONG LEE

Thermodynamic and kinetic control of a chemical process is the key to access desired products and states. Changes are made when desired product is not accessible; one may manipulate the reaction with additional reagents, catalysts and/or protecting groups. Here we report the use of carbon dioxide to direct reaction pathways in order to selectively afford desired products in high reaction rates while avoiding the formation of byproducts. The utility of CO<sub>2</sub>-mediated selective cyanohydrin synthesis was further showcased by broadening Kiliani-Fischer synthesis to offer an easy access to variety of polyols, cyanohydrins, linear alkylnitriles, by simply starting from alkyl- and arylaldehydes, KCN and atmospheric pressure of CO<sub>2</sub>.


2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


2018 ◽  
Author(s):  
Victor Laserna ◽  
Tom Sheppard

A versatile approach to the valorization of propargylic alcohols is reported, enabling controlled access to three different products from the same starting materials. Firstly, a general method for the hydroamination of propargylic alcohols with anilines is described using gold catalysis to give 3-hydroxy imines with complete regioselectivity. These 3-hydroxyimines can be reduced to give 1,3-aminoalcohols with high syn seletivity. Alternatively, by using a catalytic quantity of aniline, 3-hydroxyketones can be obtained in high yield directly from propargylic alcohols. Further manipulation of the reaction conditions enables the selective formation of 3-aminoketones via a rearrangement/hydroamination pathway.<br>


Sign in / Sign up

Export Citation Format

Share Document