Preparation of polysilsesquioxane reverse osmosis membranes for water desalination from tris[(ethoxysilyl)alkyl]amines by sol–gel process and interfacial polymerization

Author(s):  
Dian Zhang ◽  
Masakoto Kanezashi ◽  
Toshinori Tsuru ◽  
Kazuki Yamamoto ◽  
Raku Yakuwa ◽  
...  
MRS Advances ◽  
2016 ◽  
Vol 1 (20) ◽  
pp. 1469-1476 ◽  
Author(s):  
Rodolfo Cruz-Silva ◽  
Shigeki Inukai ◽  
Takumi Araki ◽  
Aaron Morelos-Gomez ◽  
Josue Ortiz-Medina ◽  
...  

ABSTRACTEfficient water desalination constitutes a major challenge for the next years and reverse osmosis membranes will play a key role to achieve this target. In this work, a high-performance reverse osmosis nanocomposite membrane was prepared by interfacial polymerization in presence of multiwalled carbon nanotubes. The effect of carbon nanotubes on the chlorine resistance, antifouling and desalination performance of the nanocomposite membranes was studied. We found that the addition of carbon nanotubes not only improved the membrane performance in terms of flow and antifouling, but also inhibited the chlorine degradation of these membranes. Several reports have acknowledged the benefits of adding carbon nanotubes to aromatic PA nanocomposite membranes, but little attention has been paid to the mechanisms related to the improvement of flow rate, selectivity and chlorine tolerance. We carried out a comprehensive study of the chemical and physical effects of carbon nanotubes on the fully crosslinked polyamide network. The chemical structure, chlorine resistance and membrane degradation was studied by several analytical techniques, permeation and fouling studies, whereas the microstructure of the nanocomposite was studied by small and wide angle X-ray scattering, high resolution transmission electron microscopy, and molecular dynamics. We found that the addition of the nanotube affects the interfacial polymerization, resulting in a polymer network with smaller pore size and higher sodium and chlorine rejection. We simulated the hydration of the membrane in seawater and found that the radial distribution function of water confined in the pores of the nanocomposite membrane exhibited smaller clusters of water molecules, thus suggesting a dense membrane structure. We analysed the network mobility and found that the nanotube provides mechanical stability to the polymer matrix. This study presents solid evidence towards more efficient and robust reverse osmosis membranes using carbon nanotubes as mechanical reinforcing and chlorine protection additive.


2017 ◽  
Vol 527 ◽  
pp. 121-128 ◽  
Author(s):  
Wansuk Choi ◽  
Sungkwon Jeon ◽  
Soon Jin Kwon ◽  
Hosik Park ◽  
You-In Park ◽  
...  

Desalination ◽  
2019 ◽  
Vol 455 ◽  
pp. 135-157 ◽  
Author(s):  
Asif Matin ◽  
Faizur Rahman ◽  
Hafiz Zahid Shafi ◽  
Syed M. Zubair

2019 ◽  
Vol 280 ◽  
pp. 03010 ◽  
Author(s):  
Dwi Rasy Mujiyanti ◽  
Muthia Elma ◽  
Mufidah Amalia

Interlayer-free glucose carbonized template silica membranesbased on tetraethyl orthosilicate (TEOS) and glucose were successfullyprepared using an acid-base catalysed sol-gel method for artificial brinewater desalination (7.5% wt NaCl solution %) at temperatures range from25, 40 and 60 °C. These membranes calcined at 250 and 400 °C. Themembranes were fabricated through sol-gel process by using TEOS(tetraethyl orthosilicate); ethanol; nitric acid; ammonia; aquadest andglucose as a template. By molar ratio is 1: 38: 0.0007: 0.0003: 5 and0.25%; 0.5%, 1% w/v glucose as template. The results show the highestwater fluxes of 1.8, 2.2 and 4.8 kg m−2 h−1 for 25, 40 and 60 °Cdesalination process with excellent salt rejections of 99.5, 99.5 and 99.7%, respectively. It was found that the higher the NaCl solution temperature asfeed solution as well as glucose concentration (0.25% to 1% wt) astemplate attached in the silica matrixes, the higher water fluxes eventhough the salt rejection remain the same. This study demonstrates that theorganosilica membranes offered the carbonized silica mesostructuremembranes with excellent separation of water from the hydrated salt ions, particularly for processing brine salt solutions.


RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5648-5655
Author(s):  
Xinxia Tian ◽  
Zhen Cao ◽  
Jian Wang ◽  
Jiangrong Chen ◽  
Yangyang Wei

Thin film nanocomposite reverse osmosis membranes were prepared by dispersing 3-aminopropyltriethoxysilane modified hydrotalcite in aqueous solution and incorporating the nanoparticles in polyamide layer during interfacial polymerization process.


2016 ◽  
Vol 4 (41) ◽  
pp. 16094-16100 ◽  
Author(s):  
Xingtao Xu ◽  
Hongmei Tang ◽  
Miao Wang ◽  
Yong Liu ◽  
Yanjiang Li ◽  
...  

Carbon spheres with a hierarchy of micropores and mesopores were prepared via a sol–gel process using a surfactant-directing assembly strategy and were applied for capacitive deionization.


2018 ◽  
Vol 47 (9) ◽  
pp. 1210-1212 ◽  
Author(s):  
Feng-Tao Zheng ◽  
Kazuki Yamamoto ◽  
Masakoto Kanezashi ◽  
Takahiro Gunji ◽  
Toshinori Tsuru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document