The disintegration rate of traditional and chemically modified plastic films in simulated fresh- and sea-water environments

1993 ◽  
Vol 47 (12) ◽  
pp. 2103-2110 ◽  
Author(s):  
Karen K. Leonas
Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1108 ◽  
Author(s):  
Giuseppe de Lucia ◽  
Alvise Vianello ◽  
Andrea Camedda ◽  
Danilo Vani ◽  
Paolo Tomassetti ◽  
...  

The abundance and distribution of microplastics (MP) were evaluated in six “clean” sites (Italian minor islands) and in two “polluted” areas (near the mouth of two major Italian rivers). Samples of MP, plankton and persistent organic pollutants (POPs) were collected using a manta trawl (MA) and a plankton net (WP2), both lined with a 333 µm mesh net. MP have been confirmed to be ubiquitous since they were found at each site, showing an average density of 0.3 ± 0.04 items/m3 (values ranged from 0.641 to 0.119 ). When comparing the clean sites with the polluted ones, a significantly higher value of MP was found near the river mouths. The most common types of MP were synthetic filaments (50.24%), followed by fragments (30.39%), thin plastic films (16.98%) and spheres (2.39%). Infrared spectroscopy analysis highlighted that the most abundant polymers were polyethylene (PE-26%), polypropylene (PP-11%), polyethylene-terephthalate/polyester (PET/PEST-8%) and ethylene-vinyl-acetate (EVA-5%). Polychlorinated biphenyls and organochlorine pesticides were detected in all the samples with a high variability among sites and depths. This study adds to the existing information on the distribution of contaminants across the Mediterranean Sea, and is useful to policy makers who wish to implement effective measures to reduce MP pollution.


Holzforschung ◽  
1988 ◽  
Vol 42 (5) ◽  
pp. 295-298 ◽  
Author(s):  
Michihiro Fujii ◽  
Shin-ichiro Shioya ◽  
Akira Ito

2014 ◽  
Vol 10 (8) ◽  
pp. 3037-3041
Author(s):  
Homayon Ahmad Panahi

A novel biosorbent is prepared by coupling a cibacron blue to yeast cells. The chemically modified yeast cells with mentioned ligand has been characterized by Fourier transform infrared spectroscopy and elemental analysis and applied for the preconcentration and extraction of trace Ni(II) from water samples. The optimum pH value for sorption of the nickel ions was 8. The sorption capacity of yeast cells- cibacron blue is 12.2 mg. g−1. A recovery of 91.4% was obtained for Ni(II) when eluted with 0.5 M HCl/HNO3 (3:1). The equilibrium data of Ni(II) adsorption on yeast cells- cibacron blue was analyzed using Langmuir model. The method was applied for Ni(II) determination in sea water sample.


Author(s):  
R. J. Lauf ◽  
H. Keating

The preparation of fragmented or particulate ceramic materials for transmission electron microscopy (TEM) examination has traditionally been difficult, particularly if a durable, permanent specimen is desired. Furthermore, most established methods for dealing with micron- and submicron-sized samples (e.g., dispersion in plastic films) do not permit selection of orientations or ion thinning. A technique has been developed that is useful for a variety of materials, permits the selection of specimen orientation, is compatible with ion milling requirements, and produces a durable specimen that can be reexamined later if necessary.


1919 ◽  
Vol 87 (2257supp) ◽  
pp. 211-211
Author(s):  
Paul T. Bruhl
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document