Chemical degradation of epoxidized natural rubber using periodic acid: Preparation of epoxidized liquid natural rubber

2004 ◽  
Vol 95 (1) ◽  
pp. 6-15 ◽  
Author(s):  
P. Phinyocheep ◽  
C. W. Phetphaisit ◽  
D. Derouet ◽  
I. Campistron ◽  
J. C. Brosse
2014 ◽  
Vol 132 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hanieh Kargarzadeh ◽  
Ishak Ahmad ◽  
Ibrahim Abdullah ◽  
Raju Thomas ◽  
Alain Dufresne ◽  
...  

2012 ◽  
Vol 97 (5) ◽  
pp. 816-828 ◽  
Author(s):  
Faten Sadaka ◽  
Irène Campistron ◽  
Albert Laguerre ◽  
Jean-François Pilard

2018 ◽  
Author(s):  
Nurul Hayati Yusof ◽  
Dazylah Darji ◽  
Krishna Veni Baratha Nesan ◽  
Fatimah Rubaizah Mohd Rasdi

2014 ◽  
Vol 69 (2) ◽  
Author(s):  
Munirah Onn ◽  
Hussin Md Nor ◽  
Wan Khairuddin Wan Ali

In this work, a novelty solid propellant based on Isophorone Diisocyanate (IPDI) with Hydroxyl Terminated Natural Rubber (HTNR) binder network was successfully developed. The preparation of Liquid Natural Rubber (LNR) by chemical degradation Deprotenized Natural Rubber (DPNR) using cobaltous was carried out. From the FTIR spectroscopy, a broad hydroxyl group peak at 3444cm-1 was obtained from HTNR. Rubber network depict a strong carbonyl group C=O at 1714cm-1 and amine group N-H at 3433cm-1. NMR analysis also proves that there was hydroxyl group presence in the sample where broad peak at range 1-3 ppm and 3.5 ppm peak for -HOCH2CH2CH2-. Four different mol ratio of HTNR with IPDI was carried out to find the best formulation with good properties as propellant. Flory-Rehner equation depict that only slightly increasing occur with higher IPDI mol ratio but mixing with Ammonium Perchlorate (AP) and Aluminium Powder (AL) significantly improve the crosslink density. Melting point for HTNR is near to room temperature and it increase abruptly after crosslink with IPDI up to range of 148-150 °C. For all formulation, cross section morphology showed occurrence of porosity and brittle type of failure however HTNR has good contact with AL and AP. 2 : 1 molar ratio depict the best burning rate but the combustion characteristic shows less energy and spark compared to HTPB binder.


2016 ◽  
Vol 89 (1) ◽  
pp. 177-198 ◽  
Author(s):  
Pejvak Rooshenass ◽  
Rosiyah Yahya ◽  
Seng Neon Gan

ABSTRACT Epoxidized natural rubber (ENR) has a high molecular weight, which has limited its solubility and processibility. For many potential applications, such as adhesives and coatings, ENR needs to be degraded into shorter chain lengths to form liquid ENR (LENR). We compared three different methods of preparing LENR: mechanical milling, chemical degradation initiated by potassium peroxodisulfate, and photooxidation initiated by ultraviolet (UV) irradiation. All the methods break down the ENR via free radicals but at different rates and by different mechanisms. In the LENR produced by these methods, ketone, aldehyde, carboxylic acid, and ester and lactone groups were observed; however, a hydrofuranic structure was only formed with UV degradation. The oxirane group was not affected significantly during the degradation, indicating that the chain sessions occurred predominantly via the –C=C– bonds. Spectroscopic analyses revealed that the consumption of a double bond is related to the extent of degradation initiated by potassium peroxodisulfate and UV irradiation. Mastication with a two roll mill produced LENR with a greater degree of unsaturation and fewer polar groups; therefore, presumably, significant chain scissions occurred from the rupturing of –C–C– single bonds. Comparing the reaction time, more LENR was obtained by UV degradation. As expected, an increase in the oxygen concentration led to the generation of more radicals, which could result in some coupling reactions.


Author(s):  
Nurul Hayati Yusof ◽  
Dazylah Darji ◽  
Fatimah Rubaizah Mohd Rasdi ◽  
Krishna Veni Baratha Nesan

2020 ◽  
Author(s):  
H. K. Abdulkadir ◽  
S. A. Abdul Shukor ◽  
R. Hamzah ◽  
N. Z. Noriman ◽  
Omar S. Dahham ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3150
Author(s):  
Anna Masek ◽  
Stefan Cichosz ◽  
Małgorzata Piotrowska

The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.


Sign in / Sign up

Export Citation Format

Share Document