uv degradation
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 37)

H-INDEX

25
(FIVE YEARS 3)

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saeid Nikafshar ◽  
Mojgan Nejad

Abstract Susceptibility of wood to UV degradation decreases the service life of wood products outdoors. Organic UV absorbers (UVAs) and hindered amine light stabilizers (HALSs), as well as inorganic UVAs, are added to coatings to improve the UV stability of coated-wood products. Although about 85% of UV radiation is absorbed by lignin in the wood, it is unclear which UV stabilizers can minimize lignin degradation. In this study, the photodegradation of softwood organosolv lignin was monitored over 35 days of UV exposure. Changes in lignin properties were assessed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR). It was found that the aromatic rings of lignin underwent significant degradation, resulting in increased glass transition temperature and molecular weight of lignin. Subsequently, 18 different additives were mixed with lignin and exposed to UV irradiation. The analysis of samples before and after UV exposure with FTIR revealed that inorganic UVAs (cerium oxide and zinc oxide) and a mixture of organic UVAs and HALSs (T-479/T-292, T-5248, and T-5333) were the most effective additives in reducing lignin degradation. This study can help coating scientists to formulate more durable transparent exterior wood coatings.


2021 ◽  
Vol 88 (6) ◽  
pp. 982-992
Author(s):  
N. Rajendraprasad

Three simple, economic, selective and accurate and precise spectrophotometric methods are developed for determination of enrofloxacin (EFX) in pharmaceuticals. Method A is based on the measurement of absorbance of EFX in 0.1M HOAc at 315 nm. The ketoxime formation reaction has been employed in method B, in which the absorbance measurement of EFX oxime product at 275 nm is described. The third method (Method C) is indirect one and is based on the oxidation of EFX by cerium(IV), reaction of unreacted cerium(IV) with p-toludine (p-TD) and measurement of coloured solution at 540 nm. The Beer’s law is obeyed in the concentration ranges of 1.2–24, 1–8, and 1–20 μg/mL EFX in methods A, B, and C, respectively, with the corresponding molar extinction coefficients of 1.52×104, 3.86×104, and 6.6×103 L/mol/cm. The regression coefficients of calibration lines are 0.9996, 0.9913, and –0.9965, in methods A, B, and C, respectively. The limits of detection (LOD) and quantification (LOQ) have also been reported for each method. The methods have been validated to check accuracy, precision, robustness and ruggedness. The application of the methods proposed to determine EFX in tablets has been described and the results have been compared with a standard method. The results of validation and application have been found to be with excellent agreement. The standard addition procedure has been adopted in recovery experiments to further ascertain the accuracy of the methods and the results of the experiments are well satisfied. The stability indicating ability of Method A has been studied by subjecting EFX to acid and alkaline hydrolysis, oxidative, thermal and UV degradation followed by measurement of absorbance of resultant EFX solutions at 315 nm. The results of degradation study indicated unsusceptible nature of EFX to any of the stress conditions.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3185
Author(s):  
Muhammad Umar

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) consist of a group of environmentally persistent, toxic and bio-accumulative organic compounds of industrial origin that are widely present in water and wastewater. Despite restricted use due to current regulations on their use, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) remain the most commonly detected long-chain PFAS. This article reviews UV-based oxidative and reductive studies for the degradation of PFAS. Most of the UV-based processes studied at lab-scale include low pressure mercury lamps (emitting at 254 and 185 nm) with some studies using medium pressure mercury lamps (200–400 nm). A critical evaluation of the findings is made considering the degradation of PFAS, the impact of water quality conditions (pH, background ions, organics), types of oxidizing/reducing species, and source of irradiation with emphasis given to mechanisms of degradation and reaction by-products. Research gaps related to understanding of the factors influencing oxidative and reductive defluorination, impact of co-existing ions from the perspective of complexation with PFAS, and post-treatment toxicity are highlighted. The review also provides an overview of future perspectives regarding the challenges in relation to the current knowledge gaps, and future needs.


2021 ◽  
pp. 133360
Author(s):  
Ying Wei ◽  
Guanglu Lu ◽  
Dongrun Xie ◽  
Tianyi Sun ◽  
Yu Liu ◽  
...  

2021 ◽  
Author(s):  
Lee Moores ◽  
Alan Kennedy ◽  
Lauren May ◽  
Shinita Jordan ◽  
Anthony Bednar ◽  
...  

Degradation of insensitive munitions (IMs) by ultraviolet (UV) light has become a concern following observations that some UV-degradation products have increased toxicity relative to parent compounds in aquatic organisms. This investigation focused on the Army's IM formulation, IMX-101, composed of three IM constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). The IM constituents and IMX-101 were irradiated in a UV photo-reactor and then administered to Daphnia pulex in acute (48 h) exposures comparing toxicities relative to the parent materials. UV-degradation of DNAN had little effect on mortality whereas mortality for UV-degraded NTO and NQ increased by factors of 40.3 and 1240, making UV-degraded NQ the principle driver of toxicity when IMX-101 is UV-degraded. Toxicity investigations for specific products formed during UV-degradation of NQ, confirmed greater toxicity than the parent NQ for degradation products. Summation of the individual toxic units for the complete set of individually measured UV-degradation products identified for NQ only accounted for 25% of the overall toxicity measured in the exposures to the UV-degraded NQ product mixture. Given the underestimation of toxicity using the sum toxic units for the individually measured UV-degradation products of NQ, we conclude that: (1) other unidentified NQ degradation products contributed principally to toxicity and/or (2) synergistic toxicological interactions occurred among the NQ degradation product mixture that exacerbated toxicity.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2368
Author(s):  
Kejia Zhang ◽  
Weicheng Fei ◽  
Jingxuan Ji ◽  
Yulong Yang

The chlorination of dissolved amino acids can generate disinfection by-products (DBPs). To prevent the formation of DBPs, we examined the UV-induced degradation of tryptophan (Trp). In order to further understand the impact of UV disinfection on Trp, the effects of initial concentrations of Trp, pH, temperature, concentrations of NO3−, HCO3− and Cl− on Trp removal were investigated, and a degradation mechanism was also proposed. The results demonstrated that degradation fitted a pseudo first-order reaction kinetic model. The degradation of Trp was mainly caused by direct UV degradation. The apparent rate constant kobs decreased with the increase in initial Trp concentration and increased with increases in pH and temperature. The thermal degradation activation energy was 19.65 kJ/mol. Anions in water also had a significant influence on the degradation of Trp. HCO3− and NO3− contributed to the kobs of Trp, but Cl− inhibited the degradation rate. By electron paramagnetic resonance (EPR) spectroscopy, ·OH was proven to be formed during the degradation of Trp by UV. Based on the intermediate products of C11H15NO3, C10H15N and C9H13N detected by LC-MS-MS, the degradation pathway of Trp was speculated.


2021 ◽  
Vol 28 (8) ◽  
Author(s):  
Jiaojiao Yang ◽  
Junxin Wang ◽  
Maria Strømme ◽  
Ken Welch

AbstractA simple solution casting approach was used to obtain transparent and flexible poly(methyl methacrylate) (PMMA) films incorporated with 1 – 4% by weight amorphous magnesium carbonate nanoparticles. Optical transparency was retained in visible wavelengths, while transmittance in the UV-B region was reduced by 22% at 310 nm and 58% at 256 nm with the addition of 4 wt. % nanoparticles. Furthermore, the incorporation of the nanoparticles was shown to provide protection for the films under UV-C irradiation (254 nm wavelength, 5 mW cm−2), with the amount of UV degradation decreasing with increasing concentration of nanoparticles. Films with incorporated nanoparticles were also shown to be able to retain adsorbed moisture much better than neat PMMA films; whereas neat PMMA films did not retain moisture, approximately 50% of the adsorbed moisture was retained in films containing 4 wt. % nanoparticles. These enhanced properties of PMMA are of great interest in applications such as flexible and transparent screens for personal electronic devices that require protection from both UV light and moisture.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 395
Author(s):  
Shouhua Su ◽  
Juan Wang ◽  
Chao Li ◽  
Jinfeng Yuan ◽  
Zhicheng Pan ◽  
...  

In the current leather market, waterproof leather occupies a large proportion, where waterproofness has become one of the important standards for leather selection. However, the most advanced fluorine-containing waterproofing agents on the market always have long chains of over eight carbons (C8), whose use has been restricted due to their bioaccumulation and recalcitrance in natural environment. Consequently, creating waterproof materials characterized by their environmentally friendly qualities and high performance is of great significance. Herein, we report a novel strategy for preparation of the fluorinated polyurethanes containing short branched fluorocarbon chains, and apply it in leather waterproofing. Because the fluorine-containing chain segments are enriched on the coating surface, the waterproof agent coating shows good hydrophobicity, low water absorption, high wear resistance and potential photodegradation of performances. Additionally, the water and oil proof performances of the coating are comparable to that of the marketed C8 waterproofing agent. Its solvent-resistant and antifouling performances are also outstanding. Therefore, the coating can meet the property requirements for daily use and has broad application prospects.


2021 ◽  
Vol 755 ◽  
pp. 143170
Author(s):  
Lisbet Sørensen ◽  
Anette Synnøve Groven ◽  
Ingrid Alver Hovsbakken ◽  
Oihane Del Puerto ◽  
Daniel F. Krause ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document