Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide

2010 ◽  
pp. NA-NA ◽  
Author(s):  
Yi Shen ◽  
Aik Chong Lua
Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 128 ◽  
Author(s):  
Sara Escorihuela ◽  
Lucía Valero ◽  
Alberto Tena ◽  
Sergey Shishatskiy ◽  
Sonia Escolástico ◽  
...  

Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt. % loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt. % and for Matrimid® and P84® at 10 wt. % loading. The most promising result was obtained for Matrimid®—10wt. % BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss.


Author(s):  
Sara Escorihuela ◽  
Lucia Valero ◽  
Alberto Tena ◽  
Sergey Shishatskiy ◽  
Sonia Escolastico ◽  
...  

Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for transport of CO2, CH4 and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type which demonstrated good distribution throughout the membrane thickness at 10 wt. % loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from 1 to 20 wt.% and for Matrimid® and P84® at 10 wt. % loading. The most promising result was obtained for Matrimid® - 10wt% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss.


2020 ◽  
Vol 2 (6) ◽  
pp. 399-406
Author(s):  
E. A. Grushevenko ◽  
I. L. Borisov ◽  
D. S. Bakhtin ◽  
V. V. Volkov ◽  
A. V. Volkov

2019 ◽  
Vol 217 ◽  
pp. 183-194 ◽  
Author(s):  
N. Belov ◽  
R. Chatterjee ◽  
R. Nikiforov ◽  
V. Ryzhikh ◽  
S. Bisoi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2199
Author(s):  
Khadija Asif ◽  
Serene Sow Mun Lock ◽  
Syed Ali Ammar Taqvi ◽  
Norwahyu Jusoh ◽  
Chung Loong Yiin ◽  
...  

Polysulfone-based mixed matrix membranes (MMMs) incorporated with silica nanoparticles are a new generation material under ongoing research and development for gas separation. However, the attributes of a better-performing MMM cannot be precisely studied under experimental conditions. Thus, it requires an atomistic scale study to elucidate the separation performance of silica/polysulfone MMMs. As most of the research work and empirical models for gas transport properties have been limited to pure gas, a computational framework for molecular simulation is required to study the mixed gas transport properties in silica/polysulfone MMMs to reflect real membrane separation. In this work, Monte Carlo (MC) and molecular dynamics (MD) simulations were employed to study the solubility and diffusivity of CO2/CH4 with varying gas concentrations (i.e., 30% CO2/CH4, 50% CO2/CH4, and 70% CO2/CH4) and silica content (i.e., 15–30 wt.%). The accuracy of the simulated structures was validated with published literature, followed by the study of the gas transport properties at 308.15 K and 1 atm. Simulation results concluded an increase in the free volume with an increasing weight percentage of silica. It was also found that pure gas consistently exhibited higher gas transport properties when compared to mixed gas conditions. The results also showed a competitive gas transport performance for mixed gases, which is more apparent when CO2 increases. In this context, an increment in the permeation was observed for mixed gas with increasing gas concentrations (i.e., 70% CO2/CH4 > 50% CO2/CH4 > 30% CO2/CH4). The diffusivity, solubility, and permeability of the mixed gases were consistently increasing until 25 wt.%, followed by a decrease for 30 wt.% of silica. An empirical model based on a parallel resistance approach was developed by incorporating mathematical formulations for solubility and permeability. The model results were compared with simulation results to quantify the effect of mixed gas transport, which showed an 18% and 15% percentage error for the permeability and solubility, respectively, in comparison to the simulation data. This study provides a basis for future understanding of MMMs using molecular simulations and modeling techniques for mixed gas conditions that demonstrate real membrane separation.


1992 ◽  
Vol 25 (2) ◽  
pp. 788-796 ◽  
Author(s):  
D. H. Weinkauf ◽  
H. D. Kim ◽  
D. R. Paul

Sign in / Sign up

Export Citation Format

Share Document