Failure mechanism of rigid polyurethane foam under high temperature vibration condition by experimental and finite element method

2019 ◽  
Vol 137 (6) ◽  
pp. 48343 ◽  
Author(s):  
Jiacheng Wu ◽  
Yannan He ◽  
Zhiqiang Yu
1990 ◽  
Vol 112 (3) ◽  
pp. 266-272 ◽  
Author(s):  
H. Song ◽  
A. Moshaiov

The axisymmetric distortion in girth-welded pipes is studied in this paper. A model is developed based on the fact that only a small part of the pipe near the welding arc undergoes high temperature changes, and thus behaves thermo-elastic-plastically, while the rest of the structure is elastic in nature and may, at most, have some thermo-elastic effects. The model is shown to match Finite Element Method in predicting the overall approximated axisymmetric shrinkage in girth-welded pipes. A qualitative agreement with published analytical and experimental results is achieved as well.


2007 ◽  
Vol 551-552 ◽  
pp. 347-353
Author(s):  
K. Lei ◽  
Kai Feng Zhang ◽  
M.J. Tong

Scale effects in the high temperature gas pressure forming of electrodeposited fine-grained copper thin sheets were investigated by a series of tests at various forming temperatures and die apertures. The average as-deposited copper grain size was 5 μm. The geometrical parameters of the bugling die system and the thickness of copper sheet varied in proportion. Different radius hemisphere parts from 0.5mm to 5mm were obtained at a strain rate of 5.0×10−4 s−1, which was controlled by pressure forces curves determined in terms of a finite element method (FEM) based on constitutive equation proposed by Backoften in 1964. The experimental relative bulging height (RBH) values were measured, and compared with that predicted by the same finite element method (FEM). It was found that the experimental values of large scale parts approach to simulated values, whereas the experimental values of small scale parts were quite different from simulated values. In order to explain these phenomena, a grain-rotation-weakened mechanism was proposed.


Author(s):  
Yukihiro Iwata ◽  
Hiroto Inoue ◽  
Kenji Tsuji ◽  
Kazuhiko Hosokawa

Abstract Concerning the development of portable optical disk products, higher impact resistant of the optical pick-up is required. Conventionally, cut and try measures, mainly based on experiment were applied to these problems, and it took much time and cost. Therefore, we developed this drop impact analysis of the optical pick-up based on the Finite Element Method (FEM) and clarified the failure mechanism of the suspension wire breaking with drop impact. With this analysis method, we also developed a new optical pick-up with a curved suspension wire, and realized much higher impact resistance.


2008 ◽  
Vol 141-143 ◽  
pp. 671-676
Author(s):  
Song Yang Zhang ◽  
Mao Peng Geng ◽  
Shui Sheng Xie

The temperature fields during semi-solid magnesium alloy produced by casting-rolling technology has been simulated by finite element method on the basis of ANSYS. The temperature fields for different conditions were obtained, which is consistent with the experimental results. Results show that there is a high temperature field in the casting and rolling zone. The temperature fluctuates from the center to edge of the strip near the entry of the casting and rolling zone. but The temperature decreases gradually from the center to edge of the strip near the exit of the casting and rolling zone. There are some remarkable effects of the temperature of the casting and rolling, the velocity of the casting and rolling, the gap of two roll, the cooling of the roll and the diameter of the roll on the temperature field, which are in agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document