High‐performance fiber‐reinforced composites with a polydopamine/epoxy silane hydrolysis‐condensate bilayer on surface of ultra‐high molecular weight polyethylene fiber

2021 ◽  
pp. 52062
Author(s):  
Yao Zhang ◽  
Shao Cao ◽  
Xiaochen Zhou ◽  
Fanmin Kong ◽  
Huaidong Li ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5628
Author(s):  
Ting Gong ◽  
Iurie Curosu ◽  
Frank Liebold ◽  
Duy M. P. Vo ◽  
Konrad Zierold ◽  
...  

The paper at hand presents an investigation of the tensile behavior of high-strength, strain-hardening cement-based composites (HS-SHCC), reinforced with a single layer of continuous, two-dimensional textile made of ultra-high molecular weight polyethylene (UHMWPE). Uniaxial tension tests were performed on the bare UHMWPE textiles, on plain HS-SHCC, and on the hybrid fiber-reinforced composites. The bond properties between the textile yarns and the surrounding composite were investigated in single-yarn pullout experiments. In order to assess the influence of bond strength between the yarn and HS-SHCC on the tensile behavior of the composites with hybrid fiber reinforcement, the textile samples were analyzed both with, and without, an additional coating of epoxy resin and sand. Compared to the composites reinforced with carbon yarns in previous studies by the authors, the high elongation capacity of the UHMWPE textile established the higher strain capacity of the hybrid fiber-reinforced composites, and showed superior energy absorption capacity up to failure. The UHMWPE textile limited the average crack width in comparison with that of plain HS-SHCC, but led to slightly larger crack widths when compared to equivalent composites reinforced with carbon textile, the reason for which was traced back to the lower Young’s modulus and the higher elongation capacity of the polymer textile.


2010 ◽  
Vol 123-125 ◽  
pp. 65-68 ◽  
Author(s):  
Hua Yang ◽  
Atsuhiko Yamanaka ◽  
Qing Qing Ni

Electromagnetic shielding effect material is needed because electronic devices suffer electromagnetic interference. Otherwise, in many engineering designs such as antenna fairings, sonar cover and stealth aircraft, materials with good electromagnetic penetration are desired. High performance fiber-reinforced composites have high specific strength and mechanical properties, and there is therefore a need to develop an electronics enclosure with optimum shielding by using a combination of particular fiber reinforcements and a polymer matrix. This paper describes the development of high-performance fiber-reinforced composites that use four high strength fibers (super fibers), Dyneema SK60 (an ultra-high molecular weight polyethylene fiber), Zylon HM (poly-p-phenylenebenzobisoxazole fiber), Technora T-241J (aramid fiber) and Torayca T800HB (carbon fiber). These super fibers were fabricated by compression molding and their shielding effectiveness (SE) was tested. The results showed that the newly developed Dyneema fiber, Zylon fiber and Technora fiber composites exhibited low electromagnetic shielding properties of 1.3~2.3 dB at a frequency of 0.5~18 GHz. Furthermore, the Torayca fiber composite has high electromagnetic shielding properties of 10.2~20.7 dB at the same frequency. It is expected that these high-strength composites with optimum SE can be obtained by controlling the electromagnetic shielding properties from hybrid multi-fiber structures.


2010 ◽  
Vol 34-35 ◽  
pp. 1532-1535 ◽  
Author(s):  
Bin Bin Shi ◽  
Ying Sun ◽  
Li Chen ◽  
Jia Lu Li

Some dynamic compressive tests about Ultra-High Molecular Weight Polyethylene Fiber-reinforced laminated Composites have been done using SHPB experimental system.The stress-strain curves of UHMWPE Fiber-reinforced Composites of three different laminated angles (0/90°, 0/90/45/-45°, 0/90/30/-60/60/-30°) are obtained at higher strain rates and their dynamic mechanical properties are also investigated at the same time.Based on all the stress-strain curves obtained, the characteristics of energy absorption of UHMWPE fiber angle-plied composites are analyzed and discussed.It is found that laminated angle has made little effect on the dynamic energy absorption of composites at higher strain rates.In addition,delamination and compaction in the thickness direction constitute the main dynamic failure mechanisms, which are studied by means of image analyses for the specimens after compression.


Sign in / Sign up

Export Citation Format

Share Document