Behavioural plasticity and population connectivity: Contributors to the establishment of new pinniped breeding colonies

Author(s):  
B. Louise Chilvers ◽  
M.L. (Phred) Dobbins
2016 ◽  
Vol 94 (1) ◽  
pp. 7-13 ◽  
Author(s):  
K.K. Cecala ◽  
J.C. Maerz

Behaviour often regulates population responses to environmental change, but linking behavioural responses to population patterns can be challenging because behavioural responses are often context-dependent, have an instinctive component, and yet may be modified by experience. Black-bellied Salamanders (Desmognathus quadramaculatus (Holbrook, 1840)) occupy forested streams where dense canopies create cool, dark environments. Because riparian deforestation negatively affects salamander-population connectivity yet some individuals choose to persist in these gaps, we sought to evaluate whether phototaxis could explain these patterns and whether phototactic behaviour would be influenced by experience (capture from forested or deforested areas) or context (refuge type and availability). Our results demonstrated that larval D. quadramaculatus exhibited negative phototaxis, but that larvae from forested streams exhibited stronger negative phototaxis than individuals from deforested streams. Larvae also selected habitat closer to light when refuge was available. Our results show that light alters habitat use by larval D. quadramaculatus, but the magnitude of that effect depends on refuge availability and experience with well-lit conditions associated with forest removal. As human activities reduce canopy cover and refuge availability, negative phototaxis may be one explanation for behavioural barriers to movement. Ultimately, the ability of salamanders to exhibit behavioural plasticity will determine their potential for local adaptation facilitating persistence in the face of environmental change.


Larval transport is fundamental to several ecological processes, yet it remains unresolved for the majority of systems. We define larval transport, and describe its components, namely, larval behavior and the physical transport mechanisms accounting for advection, diffusion, and their variability. We then discuss other relevant processes in larval transport, including swimming proficiency, larval duration, accumulation in propagating features, episodic larval transport, and patchiness and spatial variability in larval abundance. We address challenges and recent approaches associated with understanding larval transport, including autonomous sampling, imaging, -omics, and the exponential growth in the use of poorly tested numerical simulation models to examine larval transport and population connectivity. Thus, we discuss the promises and pitfalls of numerical modeling, concluding with recommendations on moving forward, including a need for more process-oriented understanding of the mechanisms of larval transport and the use of emergent technologies.


Ecosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Sarah E. Lehnen ◽  
Mitch A. Sternberg ◽  
Hilary M. Swarts ◽  
Steven E. Sesnie

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Mohammadi ◽  
K. Almasieh ◽  
D. Nayeri ◽  
F. Ataei ◽  
A. Khani ◽  
...  

AbstractIran lies at the southernmost range limit of brown bears globally. Therefore, understanding the habitat associations and patterns of population connectivity for brown bears in Iran is relevant for the species’ conservation. We applied species distribution modeling to predict habitat suitability and connectivity modeling to identify population core areas and corridors. Our results showed that forest density, topographical roughness, NDVI and human footprint were the most influential variables in predicting brown bear distribution. The most crucial core areas and corridor networks for brown bear are concentrated in the Alborz and Zagros Mountains. These two core areas were predicted to be fragmented into a total of fifteen isolated patches if dispersal of brown bear across the landscape is limited to 50,000 cost units, and aggregates into two isolated habitat patches if the species is capable of dispersing 400,000 cost units. We found low overlap between corridors, and core habitats with protected areas, suggesting that the existing protected area network may not be adequate for the conservation of brown bear in Iran. Our results suggest that effective conservation of brown bears in Iran requires protection of both core habitats and the corridors between them, especially outside Iran’s network of protected areas.


2021 ◽  
Author(s):  
R. J. David Wells ◽  
Veronica A. Quesnell ◽  
Robert L. Humphreys ◽  
Heidi Dewar ◽  
Jay R. Rooker ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Selene S. C. Nogueira ◽  
Sérgio L. G. Nogueira-Filho ◽  
José M. B. Duarte ◽  
Michael Mendl

Within a species, some individuals are better able to cope with threatening environments than others. Paca (Cuniculus paca) appear resilient to over-hunting by humans, which may be related to the behavioural plasticity shown by this species. To investigate this, we submitted captive pacas to temperament tests designed to assess individual responses to short challenges and judgement bias tests (JBT) to evaluate individuals’ affective states. Results indicated across-time and context stability in closely correlated “agitated”, “fearful” and “tense” responses; this temperament dimension was labelled “restless”. Individual “restless” scores predicted responses to novelty, although not to simulated chasing and capture by humans in a separate modified defence test battery (MDTB). Restless animals were more likely to show a greater proportion of positive responses to an ambiguous cue during JBT after the MDTB. Plasticity in defensive behaviour was inferred from changes in behavioural responses and apparently rapid adaptation to challenge in the different phases of the MDTB. The results indicate that both temperament and behavioural plasticity may play a role in influencing paca responses to risky situations. Therefore, our study highlights the importance of understanding the role of individual temperament traits and behavioural plasticity in order to better interpret the animals’ conservation status and vulnerabilities.


Sign in / Sign up

Export Citation Format

Share Document