Pareto optimum design of an adaptive robust backstepping controller for an unmanned aerial vehicle

2021 ◽  
Author(s):  
Mohammad Javad Mahmoodabadi ◽  
Nima Rezaee Babak
Author(s):  
Larbi Mohamed Elamine ◽  
Kadda Zemalache Meguenni ◽  
Meddahi Youssouf ◽  
Litim Mustapha

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1735
Author(s):  
Omar Rodríguez-Abreo ◽  
Juan Manuel Garcia-Guendulain ◽  
Rodrigo Hernández-Alvarado ◽  
Alejandro Flores Rangel ◽  
Carlos Fuentes-Silva

Backstepping is a control technique based on Lyapunov’s theory that has been successfully implemented in the control of motors and robots by several nonlinear methods. However, there are no standardized methods for tuning control gains (unlike the PIDs). This paper shows the tuning gains of the backstepping controller, using Genetic Algorithms (GA), for an Unmanned Aerial Vehicle (UAV), quadrotor type, designed for autonomous trajectory tracking. First, a dynamic model of the vehicle is obtained through the Newton‒Euler methodology. Then, the control law is obtained, and self-tuning is performed, through which we can obtain suitable values of the gains in order to achieve the design requirements. In this work, the establishment time and maximum impulse are considered as such. The tuning and simulations of the system response were performed using the MATLAB-Simulink environment, obtaining as a result the compliance of the design parameters and the correct tracking of different trajectories. The results show that self-tuning by means of genetic algorithms satisfactorily adjusts for the gains of a backstepping controller applied to a quadrotor and allows for the implementation of a control system that responds appropriately to errors of different magnitude.


2014 ◽  
Vol 79 (2) ◽  
pp. 295-321 ◽  
Author(s):  
Mohd Ariffanan Mohd Basri ◽  
Abdul Rashid Husain ◽  
Kumeresan A. Danapalasingam

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Sign in / Sign up

Export Citation Format

Share Document