scholarly journals Alleviation of catastrophic quenching in solar dynamo model with nonlocal alpha-effect

2011 ◽  
Vol 332 (5) ◽  
pp. 496-501 ◽  
Author(s):  
L.L. Kitchatinov ◽  
S.V. Olemskoy
2011 ◽  
Vol 37 (4) ◽  
pp. 286-292 ◽  
Author(s):  
L. L. Kitchatinov ◽  
S. V. Olemskoy

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


2020 ◽  
Vol 642 ◽  
pp. A51
Author(s):  
Soumitra Hazra ◽  
Allan Sacha Brun ◽  
Dibyendu Nandy

Context. Predictions of solar cycle 24 obtained from advection-dominated and diffusion-dominated kinematic dynamo models are different if the Babcock–Leighton mechanism is the only source of the poloidal field. Some previous studies argue that the discrepancy arises due to different memories of the solar dynamo for advection- and diffusion-dominated solar convection zones. Aims. We aim to investigate the differences in solar cycle memory obtained from advection-dominated and diffusion-dominated kinematic solar dynamo models. Specifically, we explore whether inclusion of Parker’s mean-field α effect, in addition to the Babcock–Leighton mechanism, has any impact on the memory of the solar cycle. Methods. We used a kinematic flux transport solar dynamo model where poloidal field generation takes place due to both the Babcock–Leighton mechanism and the mean-field α effect. We additionally considered stochastic fluctuations in this model and explored cycle-to-cycle correlations between the polar field at minima and toroidal field at cycle maxima. Results. Solar dynamo memory is always limited to only one cycle in diffusion-dominated dynamo regimes while in advection-dominated regimes the memory is distributed over a few solar cycles. However, the addition of a mean-field α effect reduces the memory of the solar dynamo to within one cycle in the advection-dominated dynamo regime when there are no fluctuations in the mean-field α effect. When fluctuations are introduced in the mean-field poloidal source a more complex scenario is evident, with very weak but significant correlations emerging across a few cycles. Conclusions. Our results imply that inclusion of a mean-field α effect in the framework of a flux transport Babcock–Leighton dynamo model leads to additional complexities that may impact memory and predictability of predictive dynamo models of the solar cycle.


2014 ◽  
Vol 785 (1) ◽  
pp. L8 ◽  
Author(s):  
Mark S. Miesch ◽  
Mausumi Dikpati

2018 ◽  
Vol 609 ◽  
pp. A56 ◽  
Author(s):  
R. H. Cameron ◽  
T. L. Duvall ◽  
M. Schüssler ◽  
H. Schunker

Context. The solar dynamo consists of a process that converts poloidal magnetic field to toroidal magnetic field followed by a process that creates new poloidal field from the toroidal field. Aims. Our aim is to observe the poloidal and toroidal fields relevant to the global solar dynamo and to see if their evolution is captured by a Babcock-Leighton dynamo. Methods. We used synoptic maps of the surface radial field from the KPNSO/VT and SOLIS observatories, to construct the poloidal field as a function of time and latitude; we also used full disk images from Wilcox Solar Observatory and SOHO/MDI to infer the longitudinally averaged surface azimuthal field. We show that the latter is consistent with an estimate of the longitudinally averaged surface azimuthal field due to flux emergence and therefore is closely related to the subsurface toroidal field. Results. We present maps of the poloidal and toroidal magnetic fields of the global solar dynamo. The longitude-averaged azimuthal field observed at the surface results from flux emergence. At high latitudes this component follows the radial component of the polar fields with a short time lag of between 1−3 years. The lag increases at lower latitudes. The observed evolution of the poloidal and toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo model.


2017 ◽  
Vol 834 (2) ◽  
pp. 133 ◽  
Author(s):  
Alexandre Lemerle ◽  
Paul Charbonneau
Keyword(s):  

2000 ◽  
Vol 21 (3-4) ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document