poloidal field
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Yu-Qiang Tao ◽  
Guo-Sheng Xu ◽  
Ling-Yi Meng ◽  
Rui-Rong Liang ◽  
Lin Yu ◽  
...  

Abstract A series of L-mode discharges have been conducted in the new ‘corner slot’ divertor on the Experimental Advanced Superconducting Tokamak (EAST) to study the divertor plasma behavior through sweeping strike point. The plasma control system controls the strike point sweeping from the horizontal target to the vertical target through poloidal field coils, with keeping the main plasma stability. The surface temperature of the divertor target cools down as the strike point moves away, indicating that sweeping strike point mitigates the heat load. To avoid the negative effect of probe tip damage, a method based on sweeping strike point is used to get the normalized profile and study the decay length of particle and heat flux on the divertor target λ js , λ q .In the discharges with high radio-frequency (RF) heating power, electron temperature T e is lower and λ js is larger when the strike point locates on the horizontal target compared to the vertical target, probably due to the corner effect. In the Ohmic discharges, λ js , λ q are much larger compared to the discharges with high RF heating power, which may be attributed to lower edge T e .


Author(s):  
Jianfeng Huang ◽  
Tommaso Bagni ◽  
Y. Ilyin ◽  
Arend Nijhuis

Abstract The ITER Poloidal Field (PF) coils are wound into double pancakes with NbTi cable-in-conduit conductors, which are connected by joints in shaking hands lap-type configuration. The coils are operating in pulsed mode with a maximum operating current of 55 kA and peak magnetic field of 6.4 T, utilizing electromagnetic load on the conductors and joints. A series of PF qualification joint samples modified in praying hands configuration is measured in the SULTAN facility. For some samples, a nonlinear voltage-current (VI) characteristic is observed during the assessment of joint resistance. The growth of joint resistance versus the B×I product is larger than what is expected from the magneto-resistant copper contribution. Two non-homogeneous contact resistance models are developed and combined to quantitatively evaluate the reason for the nonlinear VI behavior in combination with the relevant power dissipation and current redistribution in the joint. The simulations reveal that, for the particular pre-qualification PFJEU2 sample with resistance variation up to 3.5 nΩ, the most probable reason for the nonlinear VI characteristic is a widely spread defective connection between copper sole and shim. The electromagnetic force involves a separation effect on the mechanically and electrically weakly connected parts, resulting into a varying resistance depending on transport current and background field. The hypothesis and models are validated by an experiment on a similar sample PFJEU3 and a post-mortem examination of the PFJEU2 sample.


2021 ◽  
Vol 6 (4) ◽  
pp. 276-280
Author(s):  
Xiaojiao Chen ◽  

The International Thermonuclear Experimental Reactor (ITER) poloidal field (PF) AC/DC converters are composed by thyristor-based phase controlled converter modules. As the core component of ITER PF AC/DC converter, the thyristor is very sensitive to over-voltage and damaged in microseconds, therefore, the transient over-voltage protection strategy is desperately essential to ensure the converter safety operation. In this paper, a nanosecond respond and high reliability protection strategy which combined by Metal Oxide Varistor (MOV) and external bypass is proposed to protect the ITER PF AC/DC converter from transient DC over-voltage. The MOV is designed to certify the fast respond in nanosecond. Moreover, a bidirectional BreakOver Diode (BOD) circuit board is designed to activate external bypass to ensure the reliability of the transient DC over-voltage protection strategy. The performance-testing platform is built to study its performance. The experiments on ITER PF AC/DC converter test facility are carried out. According to the experiment results, the external bypass is triggered by BOD board effectively and the load current is transferred to the external bypass in 2 us when BOD suffers from an over-voltage. The effectiveness of the proposed transient DC over-voltage protection strategy is verified.


2021 ◽  
Vol 172 ◽  
pp. 112757
Author(s):  
Lili Zhu ◽  
Liansheng Huang ◽  
Peng Fu ◽  
Shiying He ◽  
Guanghong Wang ◽  
...  

Author(s):  
M. Smith ◽  
J. Hennessey ◽  
T. Willard ◽  
D. Bishop ◽  
F. Simmonds ◽  
...  
Keyword(s):  

2021 ◽  
Vol 168 ◽  
pp. 112404
Author(s):  
Zhenshang Wang ◽  
Peng Fu ◽  
Liansheng Huang ◽  
Xiaojiao Chen ◽  
Shiying He ◽  
...  

2021 ◽  
Vol 16 (0) ◽  
pp. 1402056-1402056
Author(s):  
Yongtae KO ◽  
Naoto TSUJII ◽  
Yuichi TAKASE ◽  
Akira EJIRI ◽  
Osamu WATANABE ◽  
...  

2021 ◽  
Vol 503 (1) ◽  
pp. 875-895 ◽  
Author(s):  
S K Lander ◽  
P Haensel ◽  
B Haskell ◽  
J L Zdunik ◽  
M Fortin

ABSTRACT We explore the thermal and magnetic field structure of a late-stage proto-neutron star (proto-NS). We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state (EOS) for the hot neutron star (NS). With this, we numerically solve the stellar equilibrium equations to find a range of models, including magnetic fields and rotation up to Keplerian velocity. We approximate the EOS as a barotrope, and discuss the validity of this assumption. For fixed magnetic field strength, the induced ellipticity increases with temperature; we give quantitative formulae for this. The Keplerian velocity is considerably lower for hotter stars, which may set a de facto maximum rotation rate for non-recycled NSs well below 1 kHz. Magnetic fields stronger than around 1014 G have qualitatively similar equilibrium states in both hot and cold NSs, with large-scale simple structure and the poloidal field component dominating over the toroidal one; we argue this result may be universal. We show that truncating magnetic field solutions at low multipoles leads to serious inaccuracies, especially for models with rapid rotation or a strong toroidal-field component.


Sign in / Sign up

Export Citation Format

Share Document