Validation of a schedule-based capacity restraint transit assignment model for a large-scale network

2004 ◽  
Vol 38 (1) ◽  
pp. 5-26 ◽  
Author(s):  
M. H. Poon ◽  
C. O. Tong ◽  
S. C. Wong
2020 ◽  
Vol 47 (8) ◽  
pp. 898-907 ◽  
Author(s):  
Islam Kamel ◽  
Amer Shalaby ◽  
Baher Abdulhai

Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two assignment processes for the large-scale network of the Greater Toronto Area during the morning peak. This traffic assignment model is dynamic, user-equilibrium seeking, and includes surface transit routes. It utilizes the congested travel times, determined by the dynamic traffic assignment, rather than using predefined timetables. Unlike the static transit assignment models, the proposed transit model distinguishes between different intervals within the morning peak by using the accurate demand, transit schedule, and time-based road level-of-service. The traffic and transit assignment models are calibrated against actual field observations. The resulting dynamic model is suitable for testing different demand management strategies that impose dynamic changes on multiple modes simultaneously.


MIS Quarterly ◽  
2016 ◽  
Vol 40 (4) ◽  
pp. 849-868 ◽  
Author(s):  
Kunpeng Zhang ◽  
◽  
Siddhartha Bhattacharyya ◽  
Sudha Ram ◽  
◽  
...  

2014 ◽  
Vol 26 (7) ◽  
pp. 1377-1389 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Alexandra M. Murray ◽  
Anna Christina Nobre

In the current study, we tested whether representations in visual STM (VSTM) can be biased via top–down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1–V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top–down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.


Sign in / Sign up

Export Citation Format

Share Document