Temperature‐Dependent Sex Determination in Sea Turtles in the Context of Climate Change: Uncovering the Adaptive Significance

BioEssays ◽  
2020 ◽  
Vol 42 (11) ◽  
pp. 2000146
Author(s):  
Pilar Santidrián Tomillo ◽  
James R. Spotila
2015 ◽  
Vol 21 (8) ◽  
pp. 2980-2988 ◽  
Author(s):  
Pilar Santidrián Tomillo ◽  
Meritxell Genovart ◽  
Frank V. Paladino ◽  
James R. Spotila ◽  
Daniel Oro

2010 ◽  
Vol 7 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Sherman Silber ◽  
Jonathan H. Geisler ◽  
Minjin Bolortsetseg

It has been suggested that climate change at the Cretaceous–Palaeogene (K–Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K–Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here.


2017 ◽  
Vol 284 (1848) ◽  
pp. 20162576 ◽  
Author(s):  
Graeme C. Hays ◽  
Antonios D. Mazaris ◽  
Gail Schofield ◽  
Jacques-Olivier Laloë

For species with temperature-dependent sex determination (TSD) there is the fear that rising temperatures may lead to single-sex populations and population extinction. We show that for sea turtles, a major group exhibiting TSD, these concerns are currently unfounded but may become important under extreme climate warming scenarios. We show how highly female-biased sex ratios in developing eggs translate into much more balanced operational sex ratios so that adult male numbers in populations around the world are unlikely to be limiting. Rather than reducing population viability, female-biased offspring sex ratios may, to some extent, help population growth by increasing the number of breeding females and hence egg production. For rookeries across the world ( n = 75 sites for seven species), we show that extreme female-biased hatchling sex ratios do not compromise population size and are the norm, with a tendency for populations to maximize the number of female hatchlings. Only at extremely high incubation temperature does high mortality within developing clutches threaten sea turtles. Our work shows how TSD itself is a robust strategy up to a point, but eventually high mortality and female-only hatchling production will cause extinction if incubation conditions warm considerably in the future.


Sign in / Sign up

Export Citation Format

Share Document