Sexual Development
Latest Publications


TOTAL DOCUMENTS

593
(FIVE YEARS 102)

H-INDEX

42
(FIVE YEARS 3)

Published By S. Karger Ag

1661-5433, 1661-5425

2021 ◽  
pp. 1-4
Author(s):  
Leticia R. de Oliveira ◽  
Carlos A. Longui ◽  
Guilherme Guaragna-Filho ◽  
José L. da Costa ◽  
Rafael Lanaro ◽  
...  

The human chorionic gonadotropin (hCG) stimulation test that evaluates gonadal steroidogenesis is crucial in the assessment of patients with 46,XY disorders of sex development (DSD). This study aimed to determine a testosterone (T) cutoff level that indicates an adequate testicular function using LC-MS/MS after stimulation with recombinant human chorionic gonadotropin (rhCG) in a single dose. Nineteen prepubertal children with 46,XY DSD and normal T secretion were evaluated. T and dihydrotestosterone (DHT) levels were measured by liquid chromatography technique with tandem mass spectrometry (LC-MS/MS) before and 7 days after rhCG application at 250 µg. We suggest 0.89 ng/mL as the cutoff point for T after rhCG stimulation analyzed by LC-MS/MS.


2021 ◽  
pp. 1-21
Author(s):  
Navin B. Ramakrishna ◽  
Keir Murison ◽  
Eric A. Miska ◽  
Harry G. Leitch

Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.


2021 ◽  
pp. 1-9
Author(s):  
Michelle C. Maier ◽  
Molly-Rose A. McInerney ◽  
Jennifer A. Marshall Graves ◽  
Fadi J. Charchar

The mammalian Y chromosome has evolved in many species into a specialized chromosome that contributes to sex development among other male phenotypes. This function is well studied in terms of protein-coding genes. Less is known about the noncoding genome on the Y chromosome and its contribution to both sex development and other traits. Once considered junk genetic material, noncoding RNAs are now known to contribute to the regulation of gene expression and to play an important role in refining cellular functions. The prime examples are noncoding genes on the X chromosome, which mitigate the differential dosage of genes on sex chromosomes. Here, we discuss the evolution of noncoding RNAs on the Y chromosome and the emerging evidence of how micro, long, and circular noncoding RNAs transcribed from the Y chromosome contribute to sex differentiation. We briefly touch on emerging evidence that these noncoding RNAs also contribute to some other important clinical phenotypes in humans.


2021 ◽  
pp. 1-9
Author(s):  
Shannon Dupont ◽  
Blanche Capel

At embryonic day (E) 10.5, prior to gonadal sex determination, XX and XY gonads are bipotential and able to differentiate into either a testis or an ovary. At this point, they are transcriptionally and morphologically indistinguishable. Sex determination begins around E11.5 in the mouse when the supporting cell lineage commits to either Sertoli or granulosa cell fate. Testis-specific factors such as SRY and SOX9 drive differentiation of bipotential-supporting cells into the Sertoli cell pathway, whereas ovary-specific factors like WNT4 and FOXL2 guide differentiation into granulosa cells. It is known that these 2 pathways are mutually antagonistic, and repression of the alternative fate is critical for maintenance of the testis or ovary programs. While we understand much about the transcription factor networks guiding the process of sex determination, it is only more recently that we have begun to understand how this process is epigenetically controlled. Studies in the past decade have demonstrated the importance of the chromatin state for gene expression and cell fate commitment, with histone modifications and DNA accessibility having a direct role in gene regulation. It is now clear that the chromatin state during sex determination is dynamic and likely critical for the establishment and/or maintenance of the transcriptional programs. Prior to sex determination, supporting cells have similar chromatin structure and histone modification profiles, reflecting the bipotential nature of these cells. After differentiation to Sertoli or granulosa cells, the chromatin state acquires sex-specific profiles. The proteins that regulate the deposition of histone modifications or the opening of compact chromatin likely play an important role in Sertoli and granulosa cell fate commitment and gonad development. Here, we describe studies profiling the chromatin state during gonadal sex determination and one example in which depletion of <i>Cbx2</i>, a member of the Polycomb Repressive Complex 1 (PRC1), causes male-to-female sex reversal due to a failure to repress the ovarian pathway.


2021 ◽  
pp. 1-21
Author(s):  
Roberta Migale ◽  
Michelle Neumann ◽  
Robin Lovell-Badge

The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, <i>SOX9</i> and <i>FOXL2</i>, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.


2021 ◽  
pp. 1-13
Author(s):  
Francis Poulat

In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.


2021 ◽  
pp. 1-10
Author(s):  
Elena J. Tucker

<i>FOXL2</i> encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of <i>FOXL2</i> has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in <i>FOXL2</i> are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in <i>FOXL2</i> causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on <i>FOXL2</i> and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of <i>FOXL2</i> in humans and other species.


2021 ◽  
pp. 1-18
Author(s):  
Meshi Ridnik ◽  
Stefan Schoenfelder ◽  
Nitzan Gonen

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the <i>Sox9</i> gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.


Sign in / Sign up

Export Citation Format

Share Document