scholarly journals Unexpected resilience of species with temperature-dependent sex determination at the Cretaceous–Palaeogene boundary

2010 ◽  
Vol 7 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Sherman Silber ◽  
Jonathan H. Geisler ◽  
Minjin Bolortsetseg

It has been suggested that climate change at the Cretaceous–Palaeogene (K–Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K–Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here.

2007 ◽  
Vol 4 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Rajkumar S Radder ◽  
Alexander E Quinn ◽  
Arthur Georges ◽  
Stephen D Sarre ◽  
Richard Shine

An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards ( Bassiana duperreyi , Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX–XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles.


2013 ◽  
Vol 280 (1772) ◽  
pp. 20132460 ◽  
Author(s):  
Timothy S. Mitchell ◽  
Jessica A. Maciel ◽  
Fredric J. Janzen

Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle ( Chrysemys picta ) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.


2003 ◽  
Vol 51 (4) ◽  
pp. 367 ◽  
Author(s):  
Kylie A. Robert ◽  
Michael B. Thompson ◽  
Frank Seebacher

Females of the Australian scincid lizard Eulamprus tympanum can manipulate the sex of their offspring in response to gender imbalances in the population using temperature-dependent sex determination. Here we show that when adult males are scarce females produced male-biased litters and when adult males were common females produced female-biased litters. The cues used by a female to assess the adult population are not known but presumably depend upon her experience throughout the breeding season. Maternal manipulation of the sex ratio of the offspring in E. tympanum illustrates a selective advantage of temperature-dependent sex determination in a viviparous species.


2021 ◽  
Author(s):  
◽  
Nicola J Nelson

<p>Juveniles resulting from artificially induced and incubated eggs are often used to found or augment populations of rare reptiles, but both procedures may compromise the health of hatchlings or their fitness in natural environments. I aimed to test whether these procedures affected size or performance of juvenile tuatara, Sphenodon punctatus, New Zealand reptiles with temperature-dependent sex determination (TSD). Size and performance are phenotypic traits likely to influence fitness and eventual lifetime reproductive success, and are thus important measures of the suitability of artificial induction and incubation techniques for conservation management. I incubated 320 tuatara eggs artificially at 18, 21 and 22ºC; 52% of these were obtained by induction, the remainder were collected from natural nests. An additional 25 natural nests were left intact for investigation of TSD and effects of incubation temperature in nature. Juveniles from all incubation regimes were kept for ten months post-hatching in similar rearing conditions and sexed by laparoscopy. Induced eggs were significantly smaller than naturally laid eggs, and resulted in significantly smaller hatchlings, even when variation among clutches was accounted for. Incubation temperature did not greatly influence size at hatching, but was an important determinant of size by ten months of age; initial egg mass was the most important factor affecting size of hatchlings. Data indicate that TSD occurs in nature. The sex of hatchlings from 21 nests was investigated: 10 nests produced 100% male hatchlings, 4 nests produced 100% female hatchlings, and only 7 nests produced mixed sex ratios which ranged from 11% to 88% males. Sex of juveniles was related to temperature with a larger proportion of males produced in warmer nests. The overall percentage of male hatchlings in natural nests was 64%. Hatching success was 65% from natural nests during the 1998/99 season. Incubation temperatures throughout the year ranged from 2.9 to 34.4ºC. Global warming is likely to skew the hatchling sex ratio towards males if female tuatara are unable to select nest sites according to environmental cues. Evidence from size patterns of tuatara incubated in natural nests supports differential fitness models for the adaptive significance of TSD. The evaluation of artificial incubation as a conservation management tool demonstrated that it is a procedure that benefits conservation as it can be used reliably to produce founders; hatching success was 94% during this study. The sex ratio of artificially incubated juveniles can be easily manipulated; the pivotal temperature lies between 21 and 22ºC. Constant artificial incubation conditions resulted in larger juveniles by ten months of age than those from natural incubation. Naturally incubated juvenile tuatara, however, were faster for their size, their reaction norm to predator stimuli was to run, and they were possibly more aggressive, suggesting naturally incubated juveniles could survive better in nature. No firm conclusions can be reached on the quality of artificially incubated juvenile tuatara because further research will be required to establish the relevance of performance test results in nature and consequences of incubation regimes in the longer term with respect to relative fitness of individuals.</p>


Sign in / Sign up

Export Citation Format

Share Document