Structure of a cellulose I-ethylenediamine complex

Biopolymers ◽  
1984 ◽  
Vol 23 (1) ◽  
pp. 111-126 ◽  
Author(s):  
David M. Lee ◽  
Keith E. Burnfield ◽  
John Blackwell
2008 ◽  
Vol 9 (10) ◽  
pp. 2898-2904 ◽  
Author(s):  
Masahisa Wada ◽  
Gu Joong Kwon ◽  
Yoshiharu Nishiyama

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 337
Author(s):  
Carlos Pascacio-Villafán ◽  
Luis Quintero-Fong ◽  
Larissa Guillén ◽  
José Pedro Rivera-Ciprian ◽  
Reynaldo Aguilar ◽  
...  

Adequate pupation substrates and substrate volume are critical factors in the mass-rearing of insects for Sterile Insect Technique (SIT) applications. To identify an ideal pupation substrate for a reproductive colony of Ceratitis capitata (Wiedemann) VIENNA 8 genetic sexing strain, we first examined pupation in cellulose from recycled paper (cellulose I), sawdust, fine wheat bran, vermiculite and coconut fiber using a volume of 2.5–12.5 mL of substrate for each 5 mL volume of fly larvae. We found a positive relationship between substrate volume and pupation, with cellulose I generating the highest proportions of pupation and coconut fiber the lowest. Higher proportions of female flies (white pupae) pupated in sawdust. The proportion of female fliers increased as substrate volume rose in sawdust and coconut fiber, whereas it decreased in vermiculite and cellulose. In a second experiment, we tested three types of cellulose differing in physicochemical characteristics (celluloses I, II and III), sawdust, and fine wheat bran using a substrate:larvae ratio of 1:1. The three types of cellulose produced the highest pupation levels. The highest proportions of female fliers were observed in sawdust, and cellulose types III and II. Cellulose III and sawdust at relatively low volumes were more cost-effective to produce one million pupae than other substrates, including fine wheat bran used in a mass-rearing facility in Mexico.


Sign in / Sign up

Export Citation Format

Share Document