A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process

1995 ◽  
Vol 47 (3) ◽  
pp. 277-287 ◽  
Author(s):  
G. J. F. Smolders ◽  
J. van der Meij ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen
1995 ◽  
Vol 48 (3) ◽  
pp. 234-245 ◽  
Author(s):  
G. J. F. Smolders ◽  
D. J. Bulstra ◽  
R. Jacobs ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

RSC Advances ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 2495-2506
Author(s):  
Hai Cui ◽  
Shan-Shan Yang ◽  
Ji-Wei Pang ◽  
Hai-Rong Mi ◽  
Chen-Chen Nuer ◽  
...  

An extended activated sludge model no. 2 provides a new recognition of the contributions of both loosely- and tightly-bound EPS into phosphorus removal by incorporating their formation and degradation processes during the anaerobic–aerobic cycle.


1995 ◽  
Vol 31 (2) ◽  
pp. 79-93 ◽  
Author(s):  
G. J. F. Smolders ◽  
M. C. M. van Loosdrecht ◽  
J. J. Heijnen

A structured metabolic model of the biological phosphorus removal process has been developed. In this approach the model is based on the bioenergetics and stoichiometry of the metabolism. All relevant metabolic reactions underlying the P-metabolism, considering also ATP and NADH2, are described. The derived set of stoichiometry based linear relations is used to reduce the number of reactions and conversions rates required to describe the process. The model predictions were experimentally verified by measurement of the external acetate, phosphate and ammonium concentrations as well as the internal fractions of PHB and glycogen. The model is applied to dynamic and steady-state situations over a wide range of sludge ages. The derived structured metabolic model is very well capable of describing the complex conversions of the biological phosphorus removal process.


Sign in / Sign up

Export Citation Format

Share Document