Molecular Modeling Studies of Trisubstituted Thiazoles as Cdc7 Kinase Inhibitors through 3D-QSAR and Molecular Docking Simulation

2015 ◽  
Vol 36 (6) ◽  
pp. 1599-1612 ◽  
Author(s):  
Pavithra K. Balasubramanian ◽  
Anand Balupuri ◽  
Seung Joo Cho
Author(s):  
Suraj N. Mali ◽  
Anima Pandey

Malarial parasites have been reported for moderate-high resistance towards classical antimalarial agents and henceforth development of newer novel chemical entities targeting multiple targets rather than targeting single target will be a highly promising strategy in antimalarial drug discovery. Herein, we carried out molecular modeling studies on 2,4-disubstituted imidazopyridines as anti-hemozoin formation inhibitors by using Schrödinger’s molecular modeling package (2020_4). We have developed statistically robust atom-based 3D-QSAR model (training set, [Formula: see text]; test set, [Formula: see text]; [Formula: see text] [Formula: see text]; root-mean-square error, [Formula: see text]; standard deviation, [Formula: see text]). Our molecular docking, in-silico ADMET analysis showed that dataset molecule 37, has highly promising results. Our ligand-based virtual screening resulted in top five ZINC hits, among them ZINC73737443 hit was observed with lesser energy gap, i.e. 7.85[Formula: see text]eV, higher softness value (0.127[Formula: see text]eV), and comparatively good docking score of [Formula: see text]10.2[Formula: see text]kcal/mol. Our in-silico analysis for a proposed hit, ZINC73737443 showed that this molecule has good ADMET, in-silico nonames toxic as well as noncarcinogenic profile. We believe that further experimental as well as the in-vitro investigation will throw more lights on the identification of ZINC73737443 as a potential antimalarial agent.


Sign in / Sign up

Export Citation Format

Share Document