scholarly journals Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice

2018 ◽  
Vol 8 (8) ◽  
pp. e01058 ◽  
Author(s):  
Alexander E. Gaydukov ◽  
Olga P. Balezina
1977 ◽  
Vol 40 (4) ◽  
pp. 836-843 ◽  
Author(s):  
S. Carbonetto

1. Neuromuscular transmission was studied in the extensor digitorum-longus muscle of dystrophic mice (strain 129/ReJ) by means of intracellular recording techniques. 2. In a large population of normal and dystrophic muscle fibers tested, the incidence of transmission failure was about 2% and showed no significant difference between the two groups. 3. Quantal size and quantum content of dystrophic junctions were found to be normal. This was true even of nerve terminal on apparently atrophied muscle fibers. 4. The facilitation ratio at dystrophic junctions was not significantly different from normal. 5. Dystrophic neuromuscular junctions exhibited an abnormality high frequency of giant spontaneous potentials. Application of tetrodotoxin (10(-6) M) and curare (10(-6) M) indicated that these potentials were caused by impulse-independent release of acetylcholine. 6. Neuromuscular transmission in dystrophic mice was found functionally normal and unrelated to the degenerative state of the muscle.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 762 ◽  
Author(s):  
Alexander Gaydukov ◽  
Polina Bogacheva ◽  
Ekaterina Tarasova ◽  
Anastasia Molchanova ◽  
Anna Miteva ◽  
...  

The aim of this study was to compare the acute effects of thrombin and brain-derived neurotrophic factor (BDNF) on spontaneous miniature endplate potentials (MEPPs) and multiquantal evoked endplate potentials (EPPs) in mouse neuromuscular junctions (NMJs) of m. diaphragma and m. EDL. Intracellular microelectrode recordings of MEPPs and EPPs were used to evaluate the changes in acetylcholine (ACh) release in mature and newly-formed mouse NMJs. Thrombin (1 nM) increased the amplitude of MEPPs and EPPs by 25–30% in mature and newly-formed NMJs. This effect was due to an enhanced loading of synaptic vesicles with ACh and increase of ACh quantal size, since it was fully prevented by blocking of vesicular ACh transporter. It was also prevented by tropomyosin-related kinase B (TrkB) receptors inhibitor ANA12. Exogenous BDNF (1 nM) mimicked thrombin effect and increased the amplitude of MEPPs and EPPs by 25–30%. It required involvement of protein kinase A (PKA) and mitogen-activated protein kinase (MEK1/2)-mediated pathway, but not phospholipase C (PLC). Blocking A2A adenosine receptors by ZM241385 abolished the effect of BDNF, whereas additional stimulation of A2A receptors by CGS21680 increased MEPP amplitudes, which was prevented by MEK1/2 inhibitor U0126. At mature NMJs, BDNF enhanced MEPPs frequency by 30–40%. This effect was selectively prevented by inhibition of PLC, but not PKA or MEK1/2. It is suggested that interrelated effects of thrombin/BDNF in mature and newly-formed NMJs are realized via enhancement of vesicular ACh transport and quantal size increase. BDNF-induced potentiation of synaptic transmission involves the functional coupling between A2A receptor-dependent active PKA and neurotrophin-triggered MAPK pathway, as well as PLC-dependent increase in frequency of MEPPs.


Sign in / Sign up

Export Citation Format

Share Document