scholarly journals Systematic evaluation of fluorination as modification for peptide‐based fusion inhibitors against HIV‐1 infection

ChemBioChem ◽  
2021 ◽  
Author(s):  
Susanne Huhmann ◽  
Elisabeth Nyakatura ◽  
Anette Rohrhofer ◽  
Johann Moschner ◽  
Barbara Schmidt ◽  
...  
2021 ◽  
pp. 104840
Author(s):  
Qiaoshuai Lan ◽  
Jing Pu ◽  
Yanxing Cai ◽  
Jie Zhou ◽  
Lijue Wang ◽  
...  
Keyword(s):  

2011 ◽  
Vol 56 (2) ◽  
pp. e51-e53 ◽  
Author(s):  
Francesca Cossarini ◽  
Enzo Boeri ◽  
Filippo Canducci ◽  
Stefania Salpietro ◽  
Alba Bigoloni ◽  
...  

2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Olfa Mzoughi ◽  
Meritxell Teixido ◽  
Rémi Planès ◽  
Manutea Serrero ◽  
Ibtissem Hamimed ◽  
...  

Abstract The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.


2007 ◽  
Vol 81 (12) ◽  
pp. 6563-6572 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Devi Rajan ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing ∼10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Danwei Yu ◽  
Jing Xue ◽  
Huamian Wei ◽  
Zhe Cong ◽  
Ting Chen ◽  
...  

ABSTRACT We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance. IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.


2020 ◽  
Vol 99 ◽  
pp. 103782 ◽  
Author(s):  
Tarek S. Ibrahim ◽  
Riham M. Bokhtia ◽  
Amany M.M. AL-Mahmoudy ◽  
Ehab S. Taher ◽  
Mohammed A. AlAwadh ◽  
...  

2013 ◽  
Vol 1828 (8) ◽  
pp. 1777-1785 ◽  
Author(s):  
Henri G. Franquelim ◽  
Diana Gaspar ◽  
A. Salomé Veiga ◽  
Nuno C. Santos ◽  
Miguel A.R.B. Castanho

Sign in / Sign up

Export Citation Format

Share Document