Redox Mediator‐Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review

2020 ◽  
Vol 7 (12) ◽  
pp. 2513-2526 ◽  
Author(s):  
Deyu Fang ◽  
Guanyue Gao ◽  
Yajie Yang ◽  
Yu Wang ◽  
Lijuan Gao ◽  
...  
Author(s):  
Thomas Backhaus

Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of Concentration Addition and Independent Action (Response Addition) provide a robust scientific footing, several knowledge gaps remain. This includes in particular the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings.


2017 ◽  
Vol 39 (4) ◽  
pp. 233-243 ◽  
Author(s):  
Marco Pipolo ◽  
Marta Gmurek ◽  
Vanessa Corceiro ◽  
Raquel Costa ◽  
M. Emília Quinta-Ferreira ◽  
...  

2019 ◽  
Vol 79 (6) ◽  
pp. 1071-1080 ◽  
Author(s):  
Yuan Yang ◽  
Zhen Fang ◽  
Yang-Yang Yu ◽  
Yan-Zhai Wang ◽  
Saraschandra Naraginti ◽  
...  

Abstract A bioelectrochemical sensing system (BES) based on electroactive bacteria (EAB) has been used as a new and promising tool for water toxicity assessment. However, most EAB can reduce heavy metals, which usually results in low toxicity response. Herein, a starvation pre-incubation strategy was developed which successfully avoided the metal reduction during the toxicity sensing period. By integrating this starvation pre-incubation procedure with the amperometric BES, a sensitive, robust and mediator-free biosensing method for heavy metal toxicity assessment was developed. Under the optimized conditions, the IC50 (half maximal inhibitory concentration) values for Cu2+, Ni2+, Cd2+, and Cr6+ obtained were 0.35, 3.49, 6.52, 2.48 mg L−1, respectively. The measurement with real water samples also suggested this method was reliable for practical application. This work demonstrates that it is feasible to use EAB for heavy metal toxicity assessment and provides a new tool for water toxicity warning.


Author(s):  
Fatima Abdulwahab Nasser ◽  
Halah Noor Nasir ◽  
Zain Zaki Zakaria ◽  
Huseyin Yalcin

Background: In a context of tremendous economic value, the management and protection of water resources in Qatar has long been a significant issue as part of the global wastewater management plan. The process is based on several stages of treatment in order to deliver high-quality effluent standard. Treated sewage effluent (TSE) can potentially be used for agriculture in Qatar and it should be biologically evaluated before releasing it to the environment. TSE water can be further filtered with techniques that include reverse osmosis, forward osmosis, and nanofiltration. Aim: This project aims to assess the toxicity of differently treated sewage effluent water on the environement using the zebrafish model. Our approach will also be relevant to the assessment of the water quality for agriculture use. Methods: Zebrafish embryos were cultured in different effluent water samples filtered with different techniques. Toxicicity of water was assessed via multiple assasys including: survival rate, tail flicking, and hatching rate. Cardiotoxicity assessment was performed via blood velocity, cardiac output and vessels diameter measurement in major vessels, as well as gene expression for heart failure markers of ANP and BNP by PCR. Results: Samples filtered via Reverse osmosis and nano-filtration resulted in most toxicity. Total dissolved solvent (TDS) measurements were also highest in those samples, suggesting these filteration techniques may result in release of toxic compounds to effluent water. Toxicity assessment is currently ongoing to confirm the findindgs. Conclusion: Utilization of TSE for environmental and agricultural purposes will have an economical value in the nation. It is critically important to determine the most efficient and less toxic ways of water filteration. Zebrafish is a practical model that can be used to assess water toxicity. This project aims to examine toxicity of effluent water filteration techniques using the zebrafish model.


2014 ◽  
Vol 369 (1656) ◽  
pp. 20130585 ◽  
Author(s):  
Thomas Backhaus

Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of concentration addition and independent action (response addition) provide a robust scientific footing, several knowledge gaps remain. This includes, in particular, the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings.


Sign in / Sign up

Export Citation Format

Share Document