scholarly journals Variable importance: Comparison of selectivity ratio and significance multivariate correlation for interpretation of latent‐variable regression models

2020 ◽  
Vol 34 (4) ◽  
Author(s):  
Olav M. Kvalheim
2014 ◽  
Vol 28 (8) ◽  
pp. 615-622 ◽  
Author(s):  
Olav M. Kvalheim ◽  
Reidar Arneberg ◽  
Olav Bleie ◽  
Tarja Rajalahti ◽  
Age K. Smilde ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamed N. Nounou ◽  
Hazem N. Nounou

Multiscale wavelet-based representation of data has been shown to be a powerful tool in feature extraction from practical process data. In this paper, this characteristic of multiscale representation is utilized to improve the prediction accuracy of some of the latent variable regression models, such as Principal Component Regression (PCR) and Partial Least Squares (PLS), by developing a multiscale latent variable regression (MSLVR) modeling algorithm. The idea is to decompose the input-output data at multiple scales using wavelet and scaling functions, construct multiple latent variable regression models at multiple scales using the scaled signal approximations of the data and then using cross-validation, and select among all MSLVR models the model which best describes the process. The main advantage of the MSLVR modeling algorithm is that it inherently accounts for the presence of measurement noise in the data by the application of the low-pass filters used in multiscale decomposition, which in turn improves the model robustness to measurement noise and enhances its prediction accuracy. The advantages of the developed MSLVR modeling algorithm are demonstrated using a simulated inferential model which predicts the distillate composition from measurements of some of the trays' temperatures.


2014 ◽  
Vol 47 (3) ◽  
pp. 8272-8277 ◽  
Author(s):  
Le Zhou ◽  
Zhihuan Song ◽  
Junghui Chen ◽  
Zhiqiang Ge ◽  
Zhao Li

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Muddu Madakyaru ◽  
Mohamed N. Nounou ◽  
Hazem N. Nounou

Proper control of distillation columns requires estimating some key variables that are challenging to measure online (such as compositions), which are usually estimated using inferential models. Commonly used inferential models include latent variable regression (LVR) techniques, such as principal component regression (PCR), partial least squares (PLS), and regularized canonical correlation analysis (RCCA). Unfortunately, measured practical data are usually contaminated with errors, which degrade the prediction abilities of inferential models. Therefore, noisy measurements need to be filtered to enhance the prediction accuracy of these models. Multiscale filtering has been shown to be a powerful feature extraction tool. In this work, the advantages of multiscale filtering are utilized to enhance the prediction accuracy of LVR models by developing an integrated multiscale LVR (IMSLVR) modeling algorithm that integrates modeling and feature extraction. The idea behind the IMSLVR modeling algorithm is to filter the process data at different decomposition levels, model the filtered data from each level, and then select the LVR model that optimizes a model selection criterion. The performance of the developed IMSLVR algorithm is illustrated using three examples, one using synthetic data, one using simulated distillation column data, and one using experimental packed bed distillation column data. All examples clearly demonstrate the effectiveness of the IMSLVR algorithm over the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document