Direct Visualization of Substitutional Li Doping in Supported Pt Nanoparticles and Their Ultra‐selective Catalytic Hydrogenation Performance

Author(s):  
Tianyi Chen ◽  
Christopher Foo ◽  
Jianwei Zheng ◽  
Huihuang Fang ◽  
Peter Nellist ◽  
...  
Langmuir ◽  
2010 ◽  
Vol 26 (21) ◽  
pp. 16392-16396 ◽  
Author(s):  
Satoru Takakusagi ◽  
Ken-ichi Fukui ◽  
Ryugo Tero ◽  
Kiyotaka Asakura ◽  
Yasuhiro Iwasawa

ChemCatChem ◽  
2010 ◽  
Vol 2 (7) ◽  
pp. 863-870 ◽  
Author(s):  
Juliane Keilitz ◽  
Michael Schwarze ◽  
Sabrina Nowag ◽  
Reinhard Schomäcker ◽  
Rainer Haag

2022 ◽  
Vol 9 ◽  
Author(s):  
Ting-Wen Chen ◽  
Da-Wei Pang ◽  
Jian-Xin Kang ◽  
Dong-Feng Zhang ◽  
Lin Guo

In this paper, we report the construction of network-like platinum (Pt) nanosheets based on Pt/reduced graphite oxide (Pt/rGO) hybrids by delicately utilizing a calorific-effect-induced-fusion strategy. The tiny Pt species first catalyzed the H2-O2 combination reaction. The released heat triggered the combustion of the rGO substrate under the assistance of the Pt species catalysis, which induced the fusion of the tiny Pt species into a network-like nanosheet structure. The loading amount and dispersity of Pt on rGO are found to be crucial for the successful construction of network-like Pt nanosheets. The as-prepared products present excellent catalytic hydrogenation activity and superior stability towards unsaturated bonds such as olefins and nitrobenzene. The styrene can be completely converted into phenylethane within 60 min. The turnover frequency (TOF) value of network-like Pt nanosheets is as high as 158.14 h−1, which is three times higher than that of the home-made Pt nanoparticles and among the highest value of the support-free bimetallic catalysts ever reported under similar conditions. Furthermore, the well dispersibility and excellent aggregation resistance of the network-like structure endows the catalyst with excellent recyclability. The decline of conversion could be hardly identified after five times recycling experiments.


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


2007 ◽  
Vol 177 (4S) ◽  
pp. 319-319
Author(s):  
Naoto Sassa ◽  
Ryohei Hattori ◽  
Yoshinari Ono ◽  
Tokunori Yamamoto ◽  
Momokazu Gotoh

2020 ◽  
Author(s):  
Rafael Heiss ◽  
Frank W. Roemer ◽  
Christoph Lutter ◽  
Rolf Janka ◽  
Volker Schöffl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document